
Passlib Documentation
Release 1.8.0.dev0

Assurance Technologies, LLC

Oct 08, 2020

Contents

1 Passlib 1.8.0.dev0 documentation 3
1.1 Welcome . 3
1.2 Getting Started . 4
1.3 Online Resources . 4
1.4 Hosting . 4

2 Walkthrough & Tutorials 5
2.1 Installation . 5

2.1.1 Supported Platforms . 5
2.1.2 Optional Libraries . 5
2.1.3 Installation Instructions . 6
2.1.4 Testing . 6
2.1.5 Building the Documentation . 7

2.2 Library Overview . 7
2.2.1 Password Hashes . 7
2.2.2 Password Contexts . 8
2.2.3 Two-Factor Authentication . 8
2.2.4 Application Helpers . 8

2.3 New Application Quickstart Guide . 9
2.3.1 Choosing a Hash . 9

2.3.1.1 The Options . 9
2.3.1.2 Detailed Comparison of Choices . 9
2.3.1.3 Making a Decision . 11

2.3.2 Creating and Using a CryptContext . 11
2.4 PasswordHash Tutorial . 12

2.4.1 Overview . 12
2.4.2 Hashing & Verifying . 13

2.4.2.1 Hashing . 13
2.4.2.2 Verifying . 14
2.4.2.3 Unicode & non-ASCII Characters . 14

2.4.3 Customizing the Configuration . 14
2.4.3.1 The using() Method . 14
2.4.3.2 Usage Example . 14
2.4.3.3 Other Keywords . 15

2.4.4 Context Keywords . 15
2.4.5 Identifying Hashes . 16

i

2.4.6 Choosing the right rounds value . 17
2.5 CryptContext Tutorial . 17

2.5.1 Overview . 17
2.5.2 Walkthrough Outline . 18
2.5.3 Basic Usage . 18
2.5.4 Using Default Settings . 19
2.5.5 Loading & Saving a CryptContext . 20
2.5.6 Deprecation & Hash Migration . 21

2.5.6.1 Deprecating Algorithms . 21
2.5.6.2 Integrating Hash Migration . 22
2.5.6.3 Settings Rounds Limitations . 22

2.5.7 Undocumented Features . 23
2.5.8 Full Integration Example . 23

2.5.8.1 Policy Configuration File . 23
2.5.8.2 Initializing the CryptContext . 24
2.5.8.3 Encrypting New Passwords . 25
2.5.8.4 Verifying & Migrating Existing Passwords . 26

2.6 TOTP Tutorial . 26
2.6.1 Overview . 26
2.6.2 Walkthrough . 27

2.6.2.1 1. Generate an Application Secret . 27
2.6.2.2 2. TOTP Factory Initialization . 27
2.6.2.3 3. Rate-Limiting & Cache Initialization . 28
2.6.2.4 4. Setting up TOTP for a User . 28
2.6.2.5 5. Storing the TOTP object . 28
2.6.2.6 6. Verifying a Token . 29
2.6.2.7 7. Reserializing Existing Objects . 30

2.6.3 Creating TOTP Instances . 31
2.6.3.1 Direct Creation . 31
2.6.3.2 Using a Factory . 32

2.6.4 Configuring Clients . 32
2.6.4.1 Rendering URIs . 33
2.6.4.2 Rendering QR Codes . 33
2.6.4.3 Parsing URIs . 33

2.6.5 Storing TOTP instances . 34
2.6.5.1 JSON Serialization . 34
2.6.5.2 Application Secrets . 34
2.6.5.3 Encrypting Keys . 35

2.6.6 Generating Tokens (Client-Side Only) . 36
2.6.7 Verifying Tokens . 36

2.6.7.1 Match & Verify . 36
2.6.7.2 Preventing Token Reuse . 37
2.6.7.3 Why Rate-Limiting is Critical . 38

3 API Reference 39
3.1 passlib.apache - Apache Password Files . 40

3.1.1 Htpasswd Files . 40
3.1.1.1 Loading & Saving . 42
3.1.1.2 Inspection . 42
3.1.1.3 Modification . 43
3.1.1.4 Alternate Constructors . 43
3.1.1.5 Attributes . 43
3.1.1.6 Errors . 43

3.1.2 Htdigest Files . 44

ii

3.1.2.1 Loading & Saving . 44
3.1.2.2 Inspection . 45
3.1.2.3 Modification . 45
3.1.2.4 Alternate Constructors . 46
3.1.2.5 Attributes . 46
3.1.2.6 Errors . 46

3.2 passlib.apps - Helpers for various applications . 46
3.2.1 Usage Example . 47
3.2.2 Django . 47
3.2.3 LDAP . 48
3.2.4 MySQL . 48
3.2.5 PHPass . 48
3.2.6 PostgreSQL . 49
3.2.7 Roundup . 49
3.2.8 Custom Applications . 49

3.3 passlib.context - CryptContext Hash Manager . 50
3.3.1 The CryptContext Class . 50

3.3.1.1 Constructor Keywords . 50
3.3.1.2 Primary Methods . 55
3.3.1.3 Hash Migration . 57
3.3.1.4 Disabled Hash Managment . 59
3.3.1.5 Alternate Constructors . 59
3.3.1.6 Changing the Configuration . 60
3.3.1.7 Examining the Configuration . 62
3.3.1.8 Saving the Configuration . 63
3.3.1.9 Configuration Errors . 64

3.3.2 Other Helpers . 64
3.4 passlib.crypto - Cryptographic Helper Functions . 65

3.4.1 passlib.crypto.digest - Hash & Related Helpers 65
3.4.1.1 Hash Functions . 65
3.4.1.2 PKCS#5 Key Derivation Functions . 66

3.4.2 passlib.crypto.des - DES routines . 67
3.5 passlib.exc - Exceptions and warnings . 68

3.5.1 Exceptions . 69
3.5.1.1 TOTP Exceptions . 70

3.5.2 Warnings . 70
3.5.2.1 Minor Warnings . 70
3.5.2.2 Critical Warnings . 71

3.6 passlib.ext.django - Django Password Hashing Plugin . 71
3.6.1 Installation . 72
3.6.2 Configuration . 72
3.6.3 Module Contents . 73

3.7 passlib.hash - Password Hashing Schemes . 74
3.7.1 Overview . 74
3.7.2 Unix Hashes . 74

3.7.2.1 Active Unix Hashes . 75
3.7.2.2 Deprecated Unix Hashes . 83
3.7.2.3 Archaic Unix Hashes . 92

3.7.3 Other “Modular Crypt” Hashes . 101
3.7.3.1 Active Hashes . 101
3.7.3.2 Deprecated Hashes . 115

3.7.4 LDAP / RFC2307 Hashes . 119
3.7.4.1 Standard LDAP Schemes . 119
3.7.4.2 Non-Standard LDAP Schemes . 124

iii

3.7.5 SQL Database Hashes . 128
3.7.5.1 passlib.hash.mssql2000 - MS SQL 2000 password hash 129
3.7.5.2 passlib.hash.mssql2005 - MS SQL 2005 password hash 130
3.7.5.3 passlib.hash.mysql323 - MySQL 3.2.3 password hash 132
3.7.5.4 passlib.hash.mysql41 - MySQL 4.1 password hash 133
3.7.5.5 passlib.hash.postgres_md5 - PostgreSQL MD5 password hash 134
3.7.5.6 passlib.hash.oracle10 - Oracle 10g password hash 135
3.7.5.7 passlib.hash.oracle11 - Oracle 11g password hash 137

3.7.6 MS Windows Hashes . 138
3.7.6.1 passlib.hash.lmhash - LanManager Hash 138
3.7.6.2 passlib.hash.nthash - Windows’ NT-HASH 141
3.7.6.3 passlib.hash.msdcc - Windows’ Domain Cached Credentials 142
3.7.6.4 passlib.hash.msdcc2 - Windows’ Domain Cached Credentials v2 143

3.7.7 Cisco Hashes . 145
3.7.7.1 passlib.hash.cisco_type7 - Cisco “Type 7” hash 145
3.7.7.2 passlib.hash.cisco_pix - Cisco PIX MD5 hash 148
3.7.7.3 passlib.hash.cisco_asa - Cisco ASA MD5 hash 151

3.7.8 Other Hashes . 152
3.7.8.1 passlib.hash.django_digest - Django-specific Hashes 152
3.7.8.2 passlib.hash.grub_pbkdf2_sha512 - Grub’s PBKDF2 Hash 158
3.7.8.3 passlib.hash.hex_digest - Generic Hexadecimal Digests 159
3.7.8.4 passlib.hash.plaintext - Plaintext . 160

3.8 passlib.hosts - OS Password Handling . 161
3.8.1 Usage Example . 161
3.8.2 Unix Password Hashes . 161

3.8.2.1 Predefined Contexts . 162
3.8.2.2 Current Host OS . 162

3.9 passlib.ifc – Password Hash Interface . 163
3.9.1 PasswordHash API . 163
3.9.2 Base Abstract Class . 163
3.9.3 Hashing & Verification Methods . 163
3.9.4 Crypt Methods . 165
3.9.5 Factory Creation . 166
3.9.6 Hash Inspection Methods . 167
3.9.7 General Informational Attributes . 168
3.9.8 Salt Information Attributes . 170
3.9.9 Rounds Information Attributes . 170

3.10 passlib.pwd – Password generation helpers . 171
3.10.1 Password Generation . 171
3.10.2 Predefined Symbol Sets . 173
3.10.3 Password Strength Estimation . 173

3.11 passlib.registry - Password Handler Registry . 174
3.11.1 Interface . 174
3.11.2 Usage . 175

3.12 passlib.totp – TOTP / Two Factor Authentication . 176
3.12.1 Overview . 176
3.12.2 TOTP Class . 176
3.12.3 Alternate Constructors . 177
3.12.4 Factory Creation . 178
3.12.5 Basic Attributes . 179
3.12.6 Token Generation . 180

3.12.6.1 TotpToken . 180
3.12.7 Token Matching / Verification . 180

3.12.7.1 TotpMatch . 182

iv

3.12.8 Client Configuration Methods . 182
3.12.9 Serialization Methods . 184
3.12.10 Helper Methods . 184
3.12.11 AppWallet . 185

3.12.11.1 Arguments . 185
3.12.11.2 Public Methods . 186
3.12.11.3 Semi-Private Methods . 186

3.12.12 Support Functions . 187
3.12.13 Deviations . 187

3.13 passlib.utils - Helper Functions . 187
3.13.1 Constants . 187
3.13.2 Unicode Helpers . 188
3.13.3 Bytes Helpers . 188
3.13.4 Encoding Helpers . 189
3.13.5 Randomness . 190
3.13.6 Interface Tests . 191
3.13.7 Submodules . 191

3.13.7.1 passlib.utils.handlers - Framework for writing password hashes 191
3.13.7.2 passlib.utils.binary - Binary Helper Functions 201
3.13.7.3 passlib.utils.des - DES routines [deprecated] 203
3.13.7.4 passlib.utils.pbkdf2 - PBKDF2 key derivation algorithm [deprecated] . . 205

4 Other Documentation 207
4.1 Frequently Asked Questions . 207
4.2 Modular Crypt Format . 208

4.2.1 Overview . 208
4.2.2 History . 208
4.2.3 Requirements . 209
4.2.4 Identifiers & Platform Support . 210

4.2.4.1 OS Defined Hashes . 210
4.2.4.2 Additional Platforms . 210
4.2.4.3 Application-Defined Hashes . 210

4.3 Release History . 211
4.3.1 Passlib 1.8 . 211

4.3.1.1 1.8.0 (NOT YET RELEASED) . 211
4.3.2 Passlib 1.7 . 212

4.3.2.1 1.7.4 (2020-10-08) . 212
4.3.2.2 1.7.3 (2020-10-06) . 213
4.3.2.3 1.7.2 (2019-11-22) . 214
4.3.2.4 1.7.1 (2017-1-30) . 215
4.3.2.5 1.7.0 (2016-11-22) . 216

4.3.3 Passlib 1.6 . 220
4.3.3.1 1.6.5 (2015-08-04) . 220
4.3.3.2 1.6.4 (2015-07-25) . 220
4.3.3.3 1.6.3 (2015-07-25) . 221
4.3.3.4 1.6.2 (2013-12-26) . 221
4.3.3.5 1.6.1 (2012-08-02) . 221
4.3.3.6 1.6.0 (2012-05-01) . 222

4.3.4 Passlib 1.5 . 225
4.3.4.1 1.5.3 (2011-10-08) . 225
4.3.4.2 1.5.2 (2011-09-19) . 226
4.3.4.3 1.5.1 (2011-08-17) . 226
4.3.4.4 1.5.0 (2011-07-11) . 226

4.3.5 Passlib 1.4 & Earlier . 227

v

4.3.5.1 1.4 (2011-05-04) . 227
4.3.5.2 1.3.1 (2011-03-28) . 229
4.3.5.3 1.3 (2011-03-25) . 229
4.3.5.4 1.2 (2011-01-06) . 229
4.3.5.5 1.0 (2009-12-11) . 229
4.3.5.6 0.5 (2008-05-10) . 230

4.4 Copyrights & Licenses . 230
4.4.1 Credits . 230
4.4.2 License for Passlib . 230
4.4.3 Licenses for incorporated software . 231

4.4.3.1 MD5-Crypt . 231
4.4.3.2 DES . 231
4.4.3.3 jBCrypt . 231
4.4.3.4 Wordsets . 232

Python Module Index 233

Index 235

vi

Passlib Documentation, Release 1.8.0.dev0

See also:

What’s new in Passlib 1.8

Contents 1

Passlib Documentation, Release 1.8.0.dev0

2 Contents

CHAPTER 1

Passlib 1.8.0.dev0 documentation

Warning: This is the documentation for a development version of Passlib. For documentation of the latest stable
version, see https://passlib.readthedocs.io.

Note: 2020-05-01: Passlib’s public repository has moved to Heptapod!

Due to BitBucket deprecating Mercurial support, Passlib’s public repository and issue tracker has been relocated. It’s
now located at https://foss.heptapod.net/python-libs/passlib, and is powered by Heptapod. Hosting is being graciously
provided by the people at Octobus and CleverCloud!

1.1 Welcome

Passlib is a password hashing library for Python 3, which provides cross-platform implementations of over 30 pass-
word hashing algorithms, as well as a framework for managing existing password hashes. It’s designed to be useful
for a wide range of tasks, from verifying a hash found in /etc/shadow, to providing full-strength password hashing for
multi-user application.

As a quick sample, the following code hashes and then verifies a password using the PBKDF2-SHA256 algorithm:

>>> # import the hash algorithm
>>> from passlib.hash import pbkdf2_sha256

>>> # generate new salt, and hash a password
>>> hash = pbkdf2_sha256.hash("toomanysecrets")
>>> hash
'$pbkdf2-sha256$29000$N2YMIWQsBWBMae09x1jrPQ$1t8iyB2A.WF/Z5JZv.
→˓lfCIhXXN33N23OSgQYThBYRfk'

>>> # verifying the password

(continues on next page)

3

https://passlib.readthedocs.io
https://foss.heptapod.net/python-libs/passlib
https://heptapod.net/
https://octobus.net/
https://clever-cloud.com/

Passlib Documentation, Release 1.8.0.dev0

(continued from previous page)

>>> pbkdf2_sha256.verify("toomanysecrets", hash)
True
>>> pbkdf2_sha256.verify("joshua", hash)
False

1.2 Getting Started

This documentation is organized into two main parts: a narrative walkthrough of Passlib, and a top-down API refer-
ence.

Installation

See this page for system requirements & installation instructions.

Walkthrough & Tutorials

New users in particular will want to visit the walkthrough, as it provides introductory documentation
including installation requirements, an overview of what passlib provides, and a guide for getting started
quickly.

API Reference

The API reference contains a top-down reference of the passlib package.

Other Documentation

This section contains additional things that don’t fit anywhere else, including an FAQ and a complete
changelog.

1.3 Online Resources

Latest Docs: https://passlib.readthedocs.io
Latest News: https://foss.heptapod.net/python-libs/passlib/wikis/home
Public Repo: https://foss.heptapod.net/python-libs/passlib
Mailing List: https://groups.google.com/group/passlib-users
Downloads @ PyPI: https://pypi.python.org/pypi/passlib

1.4 Hosting

Thanks to the people at Octobus and CleverCloud for providing the repository / issue tracker hosting, as well as
development of Heptapod!

Thanks to ReadTheDocs for providing documentation hosting!

4 Chapter 1. Passlib 1.8.0.dev0 documentation

https://passlib.readthedocs.io
https://foss.heptapod.net/python-libs/passlib/wikis/home
https://foss.heptapod.net/python-libs/passlib
https://groups.google.com/group/passlib-users
https://pypi.python.org/pypi/passlib
https://octobus.net/
https://clever-cloud.com/
https://heptapod.net/
https://readthedocs.io

CHAPTER 2

Walkthrough & Tutorials

Introductory Materials

2.1 Installation

2.1.1 Supported Platforms

Passlib requires Python 3.5 or newer. It is known to work with the following Python implementations:

Warning: Passlib 1.8 dropped support for Python 2.x, 3.3, and 3.4; If you need support for Python
2.6 - 3.4, use the Passlib 1.7.x series.

• CPython 3 – v3.5 or newer.

• PyPy3 – v5.3 or newer.

Passlib should work with all operating systems and environments, as it contains builtin fallbacks for
almost all OS-dependant features. Google App Engine is supported as well.

Changed in version 1.8: Support for Python 2.x, 3.3, and 3.4 was dropped. Jython no longer listed, until
it has a Python 3 compatible for testing.

Changed in version 1.7: Support for Python 2.5, 3.0-3.2 was dropped. Support for PyPy 1.x was dropped.

2.1.2 Optional Libraries

• bcrypt

If installed, this will be used to handle :class:~passlib.hash.bcrypt‘ and bcrypt_sha256
hashes. If your system lacks crypt.crypt() support for bcrypt hashes, this library is
required in order for passlib to provide bcrypt support.

Use pip install passlib[bcrypt] to get the recommended bcrypt setup.

5

https://pypi.python.org/pypi/bcrypt
https://docs.python.org/3/library/crypt.html#crypt.crypt

Passlib Documentation, Release 1.8.0.dev0

• argon2_cffi (>= 18.2.0), or argon2pure (>= 1.3)

If any of these packages are installed, they will be used to provide support for the argon2
hash algorithm. argon2_cffi is currently the recommended option.

Use pip install passlib[argon2] to get the recommended argon2 setup.

• Cryptography

If installed, will be used to enable encryption of TOTP secrets for storage (see passlib.
totp).

Use pip install passlib[totp] to get the recommended TOTP setup.

• fastpbkdf2

If installed, will be used to greatly speed up pbkdf2_hmac(), and any pbkdf2-based
hashes.

• SCrypt (>= 0.6)

If installed, this will be used to provide support for the scrypt hash algorithm. If not
installed, a MUCH slower builtin reference implementation will be used.

Changed in version 1.8: Dropped support for py-bcrypt and bcryptor backends.

Changed in version 1.7: Added fastpbkdf2, cryptography, argon2_cffi, argon2pure, and scrypt support.
Removed M2Crypto support.

2.1.3 Installation Instructions

Caution: All PyPI releases are signed with the gpg key 4D8592DF4CE1ED31.

To install from PyPi using pip:

pip install passlib

To install from the source using setup.py:

python setup.py install

2.1.4 Testing

Passlib contains a comprehensive set of unittests (about 38% of the total code), which provide nearly
complete coverage, and verification of the hash algorithms using multiple external sources (if detected at
runtime).

All unit tests are contained within the passlib.tests subpackage, and are designed to be run using
the Nose unit testing library.

Once Passlib and Nose have been installed, the main suite of tests may be run using:

nosetests --tests passlib.tests

By default, this runs the main battery of tests, but omits some additional ones (such as internal cross-
checks, and mock-testing of features not provided natively by the host OS). To run these tests as well, set
the following environmental variable:

6 Chapter 2. Walkthrough & Tutorials

https://pypi.python.org/pypi/argon2_cffi
https://pypi.python.org/pypi/argon2pure
https://pypi.python.org/pypi/argon2_cffi
https://pypi.python.org/pypi/cryptography
https://pypi.python.org/pypi/fastpbkdf2
https://pypi.python.org/pypi/scrypt
http://pgp.mit.edu:11371/pks/lookup?op=get&search=0x4D8592DF4CE1ED31
http://somethingaboutorange.com/mrl/projects/nose

Passlib Documentation, Release 1.8.0.dev0

PASSLIB_TEST_MODE="full" nosetests --tests passlib.tests

To run a quick check to confirm just basic functionality, with a pared-down set of tests:

PASSLIB_TEST_MODE="quick" nosetests --tests passlib.tests

Tests may also be run via setup.py test or the included tox.ini file. The tox.ini file is used to
test passlib before each release, and contains a number different environment setups. These tests require
tox 2.5 or later.

2.1.5 Building the Documentation

The latest copy of this documentation should always be available online at https://passlib.readthedocs.io.
If you wish to generate your own copy of the documentation, you will need to:

1. Download the Passlib source, extract it, and cd into the source directory.

2. Install all the dependencies required via pip install -e .[build_docs].

3. Run python setup.py build_sphinx.

4. Once Sphinx completes its run, point a web browser to the file at SOURCE/build/sphinx/
html/index.html to access the Passlib documentation in html format.

2.2 Library Overview

Passlib is a collection of routines for managing password hashes such as found in unix “shadow” files,
as returned by stdlib’s crypt.crypt(), as stored in mysql and postgres, and various other places.
Passlib’s contents can be roughly grouped into four categories: password hashes, password contexts,
two-factor authentication, and other utility functions.

2.2.1 Password Hashes

All of the hashes supported by Passlib are implemented as “hasher” classes which can be imported from
the passlib.hash module. In turn, all of the hashers have a uniform interface, which is documented
in the PasswordHash Tutorial.

A word of warning: Some the hashes in this library are marked as “insecure”, and are provided for histor-
ical purposes only. Still others are specialized in ways that are not generally useful. If you are creating a
new application and need to choose a password hash, please read the New Application Quickstart Guide
first.

See also:

• PasswordHash Tutorial – walkthrough of using a hasher class.

• New Application Quickstart Guide – if you need to choose a hash.

• passlib.ifc – PasswordHash API reference

• passlib.hash – list of all hashes in Passlib.

2.2. Library Overview 7

https://pypi.python.org/pypi/tox
https://passlib.readthedocs.io
https://docs.python.org/3/library/crypt.html#crypt.crypt

Passlib Documentation, Release 1.8.0.dev0

2.2.2 Password Contexts

Mature applications frequently have to deal with tables of existing password hashes. Over time, they have
to support a number of tasks:

• Add support for new algorithms, and deprecate old ones.

• Raise the time-cost settings for existing algorithms as computing power increases.

• Perform rolling upgrades of existing hashes to comply with these changes.

• Eventually, these policies must be hardcoded in the source, or time must be spent implementing a
configuration language to encode them.

In these situations, loading and handling multiple hash algorithms becomes complicated and tedious. The
passlib.context module provides a single class, CryptContext, which attempts to solve all of
these problems (or at least relieve developers of most of the burden).

This class handles managing multiple password hash schemes, deprecation & migration of old hashes,
and supports a simple configuration language that can be serialized to an INI file.

See also:

• CryptContext Tutorial – walkthrough of the CryptContext class

• passlib.context – API reference

2.2.3 Two-Factor Authentication

While not strictly connected to password hashing, modern applications frequently need to perform the
related task of two-factor authentication. One of the most common protocols for doing this is TOTP
(RFC 6238). To help get TOTP in place, the passlib.totp module provides a set of helper functions
for securely configuring, persisting, and verifying TOTP tokens.

See also:

• TOTP tutorial – walkthrough of setting up TOTP integration

• passlib.totp – API reference

2.2.4 Application Helpers

Passlib also provides a number of pre-configured CryptContext instances in order to get users started
quickly:

• passlib.apps – contains pre-configured instances for managing hashes used by Postgres, Mysql,
and LDAP, and others.

• passlib.hosts – contains pre-configured instances for managing hashes as found in the
/etc/shadow files on Linux and BSD systems.

Passlib also contains a couple of additional modules which provide support for certain application-specific
tasks:

• passlib.apache – classes for managing htpasswd and htdigest files.

• passlib.ext.django – Django plugin which monkeypatches support for (almost) any hash in
Passlib.

8 Chapter 2. Walkthrough & Tutorials

https://tools.ietf.org/html/rfc6238.html

Passlib Documentation, Release 1.8.0.dev0

2.3 New Application Quickstart Guide

Need to quickly get password hash support added into your new application, but don’t have time to wade
through pages of documentation, comparing and contrasting all the different schemes? Then read on. . .

2.3.1 Choosing a Hash

If you’d like to set up a configuration that’s right for your application, the first thing to do is choose a
password hashing scheme. Passlib contains a large number of schemes, but most of them should only be
used when a specific format is explicitly required.

See also:

If you already know what hash algorithm(s) you want to use, skip to the next section: Creating and Using
a CryptContext.

2.3.1.1 The Options

There are currently four good choices1 for secure hashing:

• argon2

• bcrypt

• pbkdf2_sha256 / pbkdf2_sha512

• sha256_crypt / sha512_crypt

All four hashes share the following properties:

• No known vulnerabilities.

• Based on documented and widely reviewed algorithms.

• Public-domain or BSD-licensed reference implementations available.

• variable rounds for configuring flexible cpu cost on a per-hash basis.

• At least 96 bits of salt.

• Basic algorithm has seen heavy scrutiny and use for at least 10 years (except for Argon2, born around
2013).

• In use across a number of OSes and/or a wide variety of applications.

While Argon2 is much younger than the others, it has seen heavy scrutiny, and was purpose-designed for
password hashing. In the near future, it stands likely to become the recommended standard.

2.3.1.2 Detailed Comparison of Choices

Argon2

argon2 is the newest of the four recommended hashes. It was selected as the winner of the 2013
Password Hashing Competition, and draws on the design and lessons from BCrypt, PBKDF2, and SCrypt.
Despite being much newer than the others, it has seen heavy scrutiny. Since the Argon2 project had the

1 As of June 2016, the most commonly used password hashes are BCrypt and PBKDF2, followed by SHA512-Crypt, with Argon2 rapidly
moving up the ranks. You should make sure you are reading a current copy of the Passlib documentation, in case the state of things has changed.

2.3. New Application Quickstart Guide 9

https://password-hashing.net/
https://password-hashing.net/

Passlib Documentation, Release 1.8.0.dev0

foresight to provide not just a reference implementation, but a standard hash encoding format, these hashes
should be reliably interoperatable across all implementations.

Issues: In its default configuration, Argon2 uses more memory than the other hashes. However, this is
one of its hallmarks as a “memory hard” hashing algorithm, and contributes to its security. Furthermore
the exact amount used is configurable. Its only main drawback is that as of 2019-01-12, it’s only 6 years
old. It’s seen only a few minor adjustments since 2013, but as it is just now gaining widespread use, the
next few years are the period in which it will likely either prove itself, or be found wanting. It’s for this
reason, any cryptographic algorithm less than a decade old is generally considered “young”. :)

BCrypt

bcrypt is based on the well-tested Blowfish cipher. In use since 1999, it’s the default hash on all BSD
variants. If you want your application’s hashes to be readable by the native BSD crypt() function, this is
the hash to use. There is also an alternative LDAP-formatted version (ldap_bcrypt) available.

Issues: Neither the original Blowfish, nor the modified version which BCrypt uses, have been NIST
approved; this matter of concern is what motivated the development of SHA512-Crypt. As well, its
rounds parameter is logarithmically scaled, making it hard to fine-tune the amount of time taken to verify
passwords; which can be an issue for applications that handle a large number of simultaneous logon
attempts (e.g. web apps). Finally, BCrypt only hashes the first 72 characters of a password, and will
silently truncate longer ones (Passlib’s non-standard bcrypt_sha256 works around this last issue).

PBKDF2

pbkdf2_sha512 is a custom hash format designed for Passlib. However, it directly uses the PBKDF2
key derivation function, which was standardized in 2000, and found across a wide variety of applications
and platforms. Unlike the previous two hashes, PBKDF2 has a simple and portable design, which is
resistant (but not immune) to collision and preimage attacks on the underlying message digest. There is
also pbkdf2_sha256, which may be faster on 32 bit processors; as well as LDAP-formatted versions
of these (ldap_pbkdf2_sha512 and ldap_pbkdf2_sha256).

Issues: PBKDF2 has no major security or portability issues, and compares favorably against bcrypt.
However, bcrypt has proven slightly more resistant to modern GPU-based cracking techniques.

SHA512-Crypt

sha512_crypt is based on the well-tested md5_crypt algorithm. In use since 2008, it’s the default
hash on most Linux systems; its direct ancestor md5_crypt has been in use since 1994 on most Unix
systems. If you want your application’s hashes to be readable by the native Linux crypt() function, this
is the hash to use. There is also sha256_crypt, which may be faster on 32 bit processors; as well as
LDAP-formatted versions of these (ldap_sha512_crypt and ldap_sha256_crypt).

Issues: Like md5_crypt, its algorithm composes the underlying message digest hash in a baroque and
somewhat arbitrary set of combinations. So far this “kitchen sink” design has been successful in its
primary purpose: to prevent any attempts to create an optimized version for use in a pre-computed or
brute-force search. However, this design also hampers analysis of the algorithm for future flaws.

While this algorithm is still considered secure, it has fallen out of favor in comparison to bcrypt and
pbkdf2, due to its non-standard construction.

Furthermore, when compared to Argon2 and BCrypt, SHA512-Crypt and PBKDF2 have proven more
susceptible to cracking using modern GPU-based techniques.

10 Chapter 2. Walkthrough & Tutorials

http://www.usenix.org/event/usenix99/provos/provos_html/
http://tools.ietf.org/html/rfc2898#section-5.2
http://en.wikipedia.org/wiki/PBKDF2#Systems_that_use_PBKDF2

Passlib Documentation, Release 1.8.0.dev0

sha512_crypt is probably the best choice for Google App Engine, as Google’s production servers
appear to provide native support via crypt, which will be used by Passlib.

Note: References to this algorithm are frequently confused with a raw SHA-512 hash. While
sha512_crypt uses the SHA-512 hash as a cryptographic primitive, the algorithm’s resulting pass-
word hash is far more secure.

2.3.1.3 Making a Decision

For new applications, this decision comes down to a couple of questions:

1. Does the hash need to be natively supported by your operating system’s crypt() api, in order to
allow inter-operation with third-party applications on the host?

• If yes, the right choice is either bcrypt for BSD variants, or sha512_crypt for Linux;
since these are natively supported.

• If no, continue. . .

2. Does your hosting provider allow you to install C extensions?

• If no, you probably want to use pbkdf2_sha256, as this currently has the fastest pure-python
backend.

• If they allow C extensions, continue. . .

3. Do you want to use the latest and greatest, and don’t mind increased memory usage when hashing?

• argon2 is a next-generation hashing algorithm, attempting to become the new standard. Its
design has been being slightly tweaked since 2013, but will quite likely become the standard in
the next few years. You’ll need to install the argon2_cffi support library.

• If you want something secure, but more battle tested, continue. . .

4. The top choices left are bcrypt and pbkdf2_sha256.

Both have advantages, and their respective rough edges; though currently the balance is in favor of
bcrypt (pbkdf2 can be cracked somewhat more efficiently).

• If choosing bcrypt, we strongly recommend installing the bcrypt support library on non-BSD
operating systems.

• If choosing pbkdf2, especially on python2 < 2.7.8 and python 3 < 3.4, you will probably want
to install fastpbk2 support library.

2.3.2 Creating and Using a CryptContext

Once you’ve chosen what password hash(es) you want to use, the next step is to define a CryptContext
object to manage your hashes and related policy configuration. Insert the following code into your appli-
cation:

#
import the CryptContext class, used to handle all hashing...
#
from passlib.context import CryptContext

#

(continues on next page)

2.3. New Application Quickstart Guide 11

https://docs.python.org/3/library/crypt.html#module-crypt
https://pypi.python.org/pypi/argon2_cffi
https://pypi.python.org/pypi/bcrypt
https://pypi.python.org/pypi/fastpbkdf2

Passlib Documentation, Release 1.8.0.dev0

(continued from previous page)

create a single global instance for your app...
#
pwd_context = CryptContext(

Replace this list with the hash(es) you wish to support.
this example sets pbkdf2_sha256 as the default,
with additional support for reading legacy des_crypt hashes.
schemes=["pbkdf2_sha256", "des_crypt"],

Automatically mark all but first hasher in list as deprecated.
(this will be the default in Passlib 2.0)
deprecated="auto",

Optionally, set the number of rounds that should be used.
Appropriate values may vary for different schemes,
and the amount of time you wish it to take.
Leaving this alone is usually safe, and will use passlib's defaults.
pbkdf2_sha256__rounds = 29000,
)

To start using your CryptContext, import the context you created wherever it’s needed:

>>> # import context from where you defined it...
>>> from myapp.model.security import pwd_context

>>> # hashing a password...
>>> hash = pwd_context.hash("somepass")
>>> hash
'$pbkdf2-sha256$29000$BSBkLEXIeS9FKMW4F.I85w
→˓$SJMzqVU7fw49NDOJZHt2o9vKIfDUVM4cKlAD4MxIgD0'

>>> # verifying a password...
>>> pwd_context.verify("somepass", hash)
True
>>> pwd_context.verify("wrongpass", hash)
False

There’s many more features packed into the context objects, read the walkthrough for more. . .

See also:

• CryptContext Tutorial – full details of using the CryptContext class

• passlib.context – CryptContext API reference

• passlib.hash – list of all hashes supported by Passlib.

Tutorials

2.4 PasswordHash Tutorial

2.4.1 Overview

Passlib supports a large number of hash algorithms, all of which can be imported from the passlib.
hash module. While the exact options and behavior will vary between each algorithm, all of the hashes
provided by Passlib use the same interface, defined by the passlib.ifc.PasswordHash abstract
class.

12 Chapter 2. Walkthrough & Tutorials

Passlib Documentation, Release 1.8.0.dev0

The PasswordHash class provides a generic interface for interacting individually with the various
hashing algorithms. It offers methods and attributes for a number of use-cases, which fall into three
general categories:

• Creating & verifying hashes

• Examining the configuration of a hasher, and customizing the defaults.

• Assorting supplementary methods.

See also:

• passlib.ifc – API reference of all the methods and attributes of the PasswordHash class.

• passlib.context.CryptContext – For working with multiple hash formats at once (such a user account
table with multiple existing hash formats).

2.4.2 Hashing & Verifying

While all the hashers in passlib.hash offer a range of methods and attributes, the main activi-
ties applications will need to perform is hashing and verifying passwords. This can be done with the
PasswordHash.hash() and PasswordHash.verify() methods.

Caution: Changed in 1.7:

Prior releases used PasswordHash.encrypt() for hashing, which has now been renamed to
PasswordHash.hash(). A compatibility alias is present in 1.7, but will be removed in Passlib
2.0.

2.4.2.1 Hashing

First, import the desired hash. The following example uses the pbkdf2_sha256 class (which derives
from PasswordHash):

>>> # import the desired hasher
>>> from passlib.hash import pbkdf2_sha256

Use PasswordHash.hash() to hash a password. This call takes care of unicode encoding, picking
default rounds values, and generating a random salt:

>>> hash = pbkdf2_sha256.hash("password")
>>> hash
'$pbkdf2-sha256$29000$9t7be09prfXee2/NOUeotQ$Y.
→˓RDnnq8vsezSZSKy1QNy6xhKPdoBIwc.0XDdRm9sJ8'

Note that since each call generates a new salt, the contents of the resulting hash will differ between calls
(despite using the same password as input):

>>> hash2 = pbkdf2_sha256.hash("password")
>>> hash2
'$pbkdf2-sha256$29000$V0rJeS.FcO4dw/h/D6E0Bg$FyLs7omUppxzXkARJQSl.
→˓ozcEOhgp3tNgNsKIAhKmp8'

^^^^^^^^^^^^^^^^^^^^^^

2.4. PasswordHash Tutorial 13

Passlib Documentation, Release 1.8.0.dev0

2.4.2.2 Verifying

Subsequently, you can call PasswordHash.verify() to check user input against an existing hash:

>>> pbkdf2_sha256.verify("password", hash)
True

>>> pbkdf2_sha256.verify("joshua", hash)
False

2.4.2.3 Unicode & non-ASCII Characters

Sidenote regarding unicode passwords & non-ASCII characters:

For the majority of hash algorithms and use-cases, passwords should be provided as either unicode (or
utf-8-encoded bytes).

One exception is legacy hashes that were generated using a different character encoding. In this case,
passwords should be encoded using the correct encoding before they are passed to verify(); otherwise
users may not be able to log in successfully.

For proper internationalization, applications should also take care to ensure unicode inputs are normalized
to a single representation before hashing. The passlib.utils.saslprep() function can be used
for this purpose.

2.4.3 Customizing the Configuration

2.4.3.1 The using() Method

Each hasher contains a number of informational attributes. many of which can be customized to change
the properties of the hashes generated by PasswordHash.hash(). When you want to change the
defaults, you don’t have to modify the hasher class directly, or pass in the options to each call to
PasswordHash.hash().

Instead, all the hashes offer a PasswordHash.using() method. This is a powerful method which
accepts most hash informational attributes, as well as some other hash-specific configuration keywords;
and returns a subclass of the original hasher (or a object with an identical interface). The returned object
inherits the defaults settings from it’s parent, but integrates any values you choose to override.

Caution: Changed in 1.7:

Prior releases required you to pass custom settings to each PasswordHash.encrypt() call. That
usage pattern is deprecated, and will be removed in Passlib 2.0; code should be switched to use
PasswordHash.using(), as shown below.

2.4.3.2 Usage Example

As an example, if the hasher you select supports a variable number of iterations (such as
pbkdf2_sha256), you can specify a custom value using the rounds keyword.

Here, the default class uses 29000 rounds:

14 Chapter 2. Walkthrough & Tutorials

Passlib Documentation, Release 1.8.0.dev0

>>> from passlib.hash import pbkdf2_sha256

>>> pbkdf2_sha256.default_rounds
29000

>>> pbkdf2_sha256.hash("password")
'$pbkdf2-sha256$29000$V0rJeS.FcO4dw/h/D6E0Bg$FyLs7omUppxzXkARJQSl.
→˓ozcEOhgp3tNgNsKIAhKmp8'

^^^^^

But if we call PasswordHash.using(), we can override this value:

>>> custom_pbkdf2 = pbkdf2_sha256.using(rounds=123456)
>>> custom_pbkdf2.default_rounds
123456

>>> custom_pbkdf2.hash("password")
'$pbkdf2-sha256$123456$QwjBmJPSOsf4HyNE6L239g
→˓$8m1pnP69EYeOiKKb5sNSiYw9M8pJMyeW.CSm0KKO.GI'

^^^^^^

2.4.3.3 Other Keywords

While hashes frequently have additional keywords supported by using, the basic set of settings you can
customize can be found by inspecting the PasswordHash.setting_kwds attribute:

>>> pbkdf2_sha256.settings_kwds
("salt", "salt_size", "rounds")

For instance, the following generates pbkdf2 hashes with a 32-byte salt instead of the default 16:

>>> pbkdf2_sha256.using(salt_size=8).hash("password")
'$pbkdf2-sha256$29000$tPZ.r5UyZgyhNEaI8Z5z7r1X6p1zTknJ.T/nHINwbq0
→˓$RlM49Qf5qRraHx.L7gq3hKIKSMLttrG1zWmWXyfXqc8'

^^^

This method is also used internally by the CryptContext class it order to create a custom hasher configured
based on the CryptContext policy it was provided.

See also:

• PasswordHash.using() – API reference

2.4.4 Context Keywords

While the PasswordHash.hash() example above works for most hashes, a small number of algo-
rithms require you provide external data (such as a username) every time a hash is calculated.

An example of this is the oracle10 hash, where hashing requires a username:

>>> from passlib.hash import oracle10
>>> hash = oracle10.hash("secret", user="admin")
'B858CE295C95193F'

The difference between this and specifying something like a rounds setting (see Customizing the Config-
uration above) is that a configuration option only needs to be specified once, and is then encoded into

2.4. PasswordHash Tutorial 15

Passlib Documentation, Release 1.8.0.dev0

the hash string itself. . . Whereas a context keyword represents something that isn’t stored in the hash
string, and needs to be specified every time you call PasswordHash.hash() or PasswordHash.
verify():

>>> oracle10.verify("secret", hash, user="admin")
True

In this example, if either the username OR password is wrong, verify() will fail:

>>> oracle10.verify("secret", hash, user="wronguser")
False

>>> oracle10.verify("wrongpassword", hash, user="admin")
False

Forgetting to include a context keywords when it’s required will cause a TypeError:

>>> hash = oracle10.hash("password")
Traceback (most recent call last):

<traceback omitted>
TypeError: user must be unicode or bytes, not None

Whether a hash requires external parameters (such as user) can be determined from its documentation
page; but also programmatically from its PasswordHash.context_kwds attribute:

>>> oracle10.context_kwds
("user",)

>>> pbkdf2_sha256.context_kwds
()

2.4.5 Identifying Hashes

One of the rarer use-cases is the need to identify whether a string recognizably belongs to a given hasher
class. This can be important in some cases, because attempting to call PasswordHash.verify()
with another algorithm’s hash will result in a ValueError:

>>> from passlib.hash import pbkdf2_sha256, md5_crypt

>>> other_hash = md5_crypt.hash("password")

>>> pbkdf2_sha256.verify("password", other_hash)
Traceback (most recent call last):

<traceback omitted>
ValueError: not a valid pbkdf2_sha256 hash

This can be prevented by using the identify method, which determines whether a hash belongs to a given
algorithm:

>>> hash = pbkdf2_sha256.hash("password")
>>> pbkdf2_sha256.identify(hash)
True

>>> pbkdf2_sha256.identify(other_hash)
False

16 Chapter 2. Walkthrough & Tutorials

Passlib Documentation, Release 1.8.0.dev0

See also:

In most cases where an application needs to distinguish between multiple hash formats, it will be more
useful to switch to a CryptContext object, which automatically handles this and many similar tasks.

Todo: Document usage of PasswordHash.needs_update(), and how it ties into
PasswordHash.using().

2.4.6 Choosing the right rounds value

For hash algorithms with a variable time-cost, Passlib’s PasswordHash.default_rounds values
attempt to be secure enough for the average1 system. But the “right” value for a given hash is dependant
on the server, its cpu, its expected load, and its users. Since larger values mean increased work for an
attacker. . .

The right rounds value for a given hash & server should be the largest possible value that doesn’t cause
intolerable delay for your users.

For most public facing services, you can generally have signin take upwards of 250ms - 400ms before
users start getting annoyed. For superuser accounts, it should take as much time as the admin can stand
(usually ~4x more delay than a regular account).

Passlib’s default_rounds values are retuned periodically, starting with a rough estimate of what an
“average” system is capable of, and then setting all hash.default_rounds values to take ~300ms
on such a system. However, some older algorithms (e.g. bsdi_crypt) are weak enough that a tradeoff
must be made, choosing “more secure but intolerably slow” over “fast but unacceptably insecure”.

For this reason, it is strongly recommended to not use a value much lower than Passlib’s default, and to
use one of recommended hashes, as one of their chief qualifying features is the mere existence of rounds
values which take a short enough amount of time, and yet are still considered secure.

Todo: Expand this section into a full document, including information from the following posts:

• http://stackoverflow.com/questions/13545677/python-passlib-what-is-the-best-value-for-rounds

• http://stackoverflow.com/questions/11829602/pbkdf2-and-hash-comparison

As well as maybe JS-interactive calculation helper.

2.5 CryptContext Tutorial

2.5.1 Overview

The passlib.context module contains one main class: passlib.context.CryptContext.
This class is designed to take care of many of the more frequent coding patterns which occur in applica-
tions that need to handle multiple password hashes at once:

• identifying the algorithm used by a hash, and then verify a password.

• configure the default algorithm, load in support for new algorithms, deprecate old ones, set defaults
for time-cost parameters, etc.

1 For Passlib 1.6.3, all hashes were retuned to take ~300ms on a system with a 3.0 ghz 64 bit CPU.

2.5. CryptContext Tutorial 17

http://stackoverflow.com/questions/13545677/python-passlib-what-is-the-best-value-for-rounds
http://stackoverflow.com/questions/11829602/pbkdf2-and-hash-comparison

Passlib Documentation, Release 1.8.0.dev0

• migrate hashes / re-hash passwords when an algorithm has been deprecated.

• load said configuration from a sysadmin configurable file.

The following sections contain a walkthrough of this class, starting with some simple examples, and
working up to a complex “full-integration” example.

See also:

The passlib.context api reference, which lists all the options and methods supported by this class.

2.5.2 Walkthrough Outline

• Basic Usage

• Using Default Settings

• Loading & Saving a CryptContext

• Deprecation & Hash Migration

• Full Integration Example

Todo: This tutorial doesn’t yet cover the User Categories system; and a few other parts could use
elaboration.

2.5.3 Basic Usage

At its base, the CryptContext class is just a collection of PasswordHash objects, imported by name
from the passlib.hash module. The following snippet creates a new context object which supports
three hash algorithms (sha256_crypt, md5_crypt, and des_crypt):

>>> from passlib.context import CryptContext
>>> myctx = CryptContext(schemes=["sha256_crypt", "md5_crypt", "des_crypt"])

This new object exposes a very similar set of methods to the PasswordHash interface, and hashing and
verifying passwords is equally as straightforward:

>>> # this loads first algorithm in the schemes list (sha256_crypt),
>>> # generates a new salt, and hashes the password:
>>> hash1 = myctx.hash("joshua")
>>> hash1
'5rounds=80000$HFEGd1wnFknpibRl$VZqjyYcTenv7CtOf986hxuE0pRaGXnuLXyfb7m9xL69
→˓'

>>> # when verifying a password, the algorithm is identified automatically:
>>> myctx.verify("gtnw", hash1)
False
>>> myctx.verify("joshua", hash1)
True

>>> # alternately, you can explicitly pick one of the configured algorithms,
>>> # through this is rarely needed in practice:
>>> hash2 = myctx.hash("dogsnamehere", scheme="md5_crypt")
>>> hash2
'1e2nig/AC$stejMS1ek6W0/UogYKFao/'

(continues on next page)

18 Chapter 2. Walkthrough & Tutorials

Passlib Documentation, Release 1.8.0.dev0

(continued from previous page)

>>> myctx.verify("letmein", hash2)
False
>>> myctx.verify("dogsnamehere", hash2)
True

If not told otherwise, the context object will use the first algorithm listed in schemes when creating new
hashes. This default can be changed by using the default keyword:

>>> myctx = CryptContext(schemes=["sha256_crypt", "md5_crypt", "des_crypt"],
default="des_crypt")

>>> hash = myctx.hash("password")
>>> hash
'bIwNofDzt1LCY'

>>> myctx.identify(hash)
'des_crypt'

This concludes the basics of how to use a CryptContext object. The rest of the sections detail the various
features it offers, which probably provide a better argument for why you’d want to use it.

See also:

• the CryptContext.hash(), verify(), and identify() methods.

• the schemes and default constructor options.

2.5.4 Using Default Settings

While creating and verifying hashes is useful enough, it’s not much more than could be done by im-
porting the objects into a list. The next feature of the CryptContext class is that it can store various
customized settings for the different algorithms, instead of hardcoding them into each hash() call. As
an example, the sha256_crypt algorithm supports a rounds parameter which defaults to 80000, and
the ldap_salted_md5 algorithm uses 8-byte salts by default:

>>> from passlib.context import CryptContext
>>> myctx = CryptContext(["sha256_crypt", "ldap_salted_md5"])

>>> # sha256_crypt using 80000 rounds...
>>> myctx.hash("password", scheme="sha256_crypt")
'5rounds=80000$GgU/gwNBs9SaObqs$ohY23/zm.8O0TpkGx5fxk0aeVdFpaeKo9GUkMJ0VrMC
→˓'

^^^^^

>>> # ldap_salted_md5 with an 8 byte salt...
>>> myctx.hash("password", scheme="ldap_salted_md5")
'{SMD5}cIYrPh5f/TeUKg9oghECB5fSeu8='

^^^^^^^^^^

Instead of having to pass rounds=91234 or salt_size=16 every time encrypt() is called,
CryptContext supports setting algorithm-specific defaults which will be used every time a CryptCon-
text method is invoked. These is done by passing the CryptContext constructor a keyword with the format
scheme__setting:

2.5. CryptContext Tutorial 19

Passlib Documentation, Release 1.8.0.dev0

>>> # this reconfigures the existing context object so that
>>> # sha256_crypt now uses 91234 rounds,
>>> # and ldap_salted_md5 will use 16 byte salts:
>>> myctx.update(sha256_crypt__default_rounds=91234,
... ldap_salted_md5__salt_size=16)

>>> # the effect of this can be seen the next time encrypt is called:
>>> myctx.hash("password", scheme="sha256_crypt")
'5rounds=91234$GgU/gwNBs9SaObqs$ohY23/zm.8O0TpkGx5fxk0aeVdFpaeKo9GUkMJ0VrMC
→˓'

^^^^^

>>> myctx.hash("password", scheme="ldap_salted_md5")
'{SMD5}NnQh2S2pjnFxwtMhjbVH59TaG6P0/l/r3RsDwPj/n/M='

^^^^^^^^^^^^^^^^^^^^^

See also:

• the CryptContext.update() method.

• the default_rounds and per-scheme setting constructor options.

2.5.5 Loading & Saving a CryptContext

The previous example built up a CryptContext instance in two stages, first by calling the constructor,
and then the update() method to make some additional changes. The same configuration could of
course be done in one step:

>>> from passlib.context import CryptContext
>>> myctx = CryptContext(schemes=["sha256_crypt", "ldap_salted_md5"],
... sha256_crypt__default_rounds=91234,
... ldap_salted_md5__salt_size=16)

This is not much more useful, since these settings still have to be hardcoded somewhere in the application.
This is where the CryptContext’s serialization abilities come into play. As a starting point, every Crypt-
Context object can dump its configuration as a dictionary suitable for passing back into its constructor:

>>> myctx.to_dict()
{'schemes': ['sha256_crypt', 'ldap_salted_md5'],
'ldap_salted_md5__salt_size': 16,
'sha256_crypt__default_rounds': 91234}

However, this has been taken a step further, as CryptContext objects can also dump their configuration
into a ConfigParser-compatible string, allowing the configuration to be written to a file:

>>> cfg = print myctx.to_string()
>>> print cfg
[passlib]
schemes = sha256_crypt, ldap_salted_md5
ldap_salted_md5__salt_size = 16
sha256_crypt__default_rounds = 912345

This “INI” format consists of a section named "[passlib]", following by key/value pairs which corre-
spond exactly to the CryptContext constructor keywords (Keywords which accepts lists of names (such as
schemes) are automatically converted to/from a comma-separated string) This format allows CryptCon-
text configurations to be created in a separate file (say as part of an application’s larger config file), and

20 Chapter 2. Walkthrough & Tutorials

http://docs.python.org/library/configparser.html

Passlib Documentation, Release 1.8.0.dev0

loaded into the CryptContext at runtime. Such strings can be loaded directly when creating the context
object:

>>> # using the special from_string() constructor to
>>> # load the exported configuration created in the previous step:
>>> myctx2 = CryptContext.from_string(cfg)

>>> # or it can be loaded from a local file:
>>> myctx3 = CryptContext.from_path("/some/path/on/local/system")

This allows applications to completely extract their password hashing policies from the code, and into a
configuration file with other security settings.

Note: For CryptContext instances which already exist, the load() and load_path() methods can
be used to replace the existing state.

See also:

• the to_dict() and to_string() methods.

• the CryptContext.from_string() and CryptContext.from_path() constructors.

2.5.6 Deprecation & Hash Migration

The final and possibly most useful feature of the CryptContext class is that it can take care of dep-
recating and migrating existing hashes, re-hashing them using the current default algorithm and settings.
All that is required is that a few settings be added to the configuration, and that the application call one
extra method whenever a user logs in.

2.5.6.1 Deprecating Algorithms

The first setting that enables the hash migration features is the deprecated setting. This should be a
list algorithms which are no longer desirable to have around, but are included in schemes to provide
legacy support. For example:

>>> # this sets a context that supports 3 algorithms, but considers
>>> # two of them (md5_crypt and des_crypt) to be deprecated...
>>> from passlib.context import CryptContext
>>> myctx = CryptContext(schemes=["sha256_crypt", "md5_crypt", "des_crypt"],

deprecated=["md5_crypt", "des_crypt"])

All of the basic methods of this object will behave normally, but after an application has verified
the user entered the correct password, it can check to see if the hash has been deprecated using the
needs_update() method:

>>> # assume the user's password was stored as a sha256_crypt hash,
>>> # needs_update will show that the hash is still allowed.
>>> hash = '5rounds=80000$zWZFpsA2egmQY8R9$xp89Vvg1HeDCJ/
→˓bTDDN6qkdsCwcMM61vHtM1RNxXur.'
>>> myctx.needs_update(hash)
False

>>> # but if the user's password was stored as md5_crypt hash,
>>> # need_update will indicate that it is deprecated,

(continues on next page)

2.5. CryptContext Tutorial 21

Passlib Documentation, Release 1.8.0.dev0

(continued from previous page)

>>> # and that the original password needs to be re-hashed...
>>> hash = '1fmWm78VW$uWjT69xZNMHWyEQjq852d1'
>>> myctx.needs_update(hash)
True

Note: Internally, this is not the only thing needs_update() does. It also checks for other issues, such
as rounds / salts which are known to be weak under certain algorithms, improperly encoded hash strings,
and other configurable behaviors that are detailed later.

2.5.6.2 Integrating Hash Migration

To summarize the process described in the previous section, all the actions an application would usually
need to perform can be combined into the following bit of skeleton code:

1 hash = get_hash_from_user(user)
2 if pass_ctx.verify(password, hash):
3 if pass_ctx.needs_update(hash):
4 new_hash = pass_ctx.hash(password)
5 replace_user_hash(user, new_hash)
6 do_successful_things()
7 else:
8 reject_user_login()

Since this is a very common pattern, the CryptContext object provides a shortcut: the
verify_and_update() method, which allows replacing the above skeleton code with the follow-
ing that uses 2 fewer calls (and is much more efficient internally):

1 hash = get_hash_from_user(user)
2 valid, new_hash = pass_ctx.verify_and_update(password, hash)
3 if valid:
4 if new_hash:
5 replace_user_hash(user, new_hash)
6 do_successful_things()
7 else:
8 reject_user_login()

2.5.6.3 Settings Rounds Limitations

In addition to deprecating entire algorithms, the deprecations system also allows you to place limits on
algorithms that support the variable time-cost parameter rounds:

As an example, take a typical system containing a number of user passwords, all stored using
sha256_crypt. As computers get faster, the minimum number of rounds that should be used gets
larger, yet the existing passwords will remain in the system hashed using their original value. To solve
this, the CryptContext object lets you place minimum bounds on what rounds values are allowed, using
the scheme__min_rounds set of keywords. . . any hashes whose rounds are outside this limit are
considered deprecated, and in need of re-encoding using the current policy:

First, we set up a context which requires all sha256_crypt hashes to have at least 131072 rounds:

22 Chapter 2. Walkthrough & Tutorials

Passlib Documentation, Release 1.8.0.dev0

>>> from passlib.context import CryptContext
>>> myctx = CryptContext(schemes="sha256_crypt",
... sha256_crypt__min_rounds=131072)

New hashes generated by this context will always honor the minimum (just as if default_rounds was
set to the same value):

>>> # plain call to encrypt:
>>> hash1 = myctx.hash("password")
'5rounds=131072$i6xuFK6j8r66ahGn$r.
→˓7H8HUk30qiH7fIWRJFJfhWG925nRZh90aYPMdewr3'

^^^^^^
>>> # hashes with enough rounds won't show up as deprecated...
>>> myctx.needs_update(hash1)
False

If an existing hash below the minimum is tested, it will show up as needing rehashing:

>>> # this has only 80000 rounds:
>>> hash3 = '5rounds=80000$qoCFY.akJr.flB7V
→˓$8cIZXLwSTzuCRLcJbgHlxqYKEK0cVCENy6nFIlROj05'
>>> myctx.needs_update(hash3)
True

>>> # and verify_and_update() will upgrade this hash automatically:
>>> myctx.verify_and_update("wrong", hash3)
(False, None)
>>> myctx.verify_and_update("password", hash3)
(True, '5rounds=131072$rnMqBaemVZ6QGu7v
→˓$vrAVQLEbsBoxhgem8ynvAbToCae8vpzl6ZuDS3/adlA')

^^^^^^

See also:

• the deprecated, min_rounds, and max_rounds constructor options.

• the needs_update() and verify_and_update() methods.

2.5.7 Undocumented Features

Todo: Document usage of the Disabled Hash Managment options.

2.5.8 Full Integration Example

The following is an extended example showing how to fully interface a CryptContext object into your
application. The sample configuration is somewhat more ornate that would usually be needed, just to
highlight some features, but should none-the-less be secure.

2.5.8.1 Policy Configuration File

The first thing to do is setup a configuration string for the CryptContext to use. This can be a dictionary
or string defined in a python config file, or (in this example), part of a large INI-formatted config file. All
of the documented Context Options are allowed.

2.5. CryptContext Tutorial 23

Passlib Documentation, Release 1.8.0.dev0

; the options file uses the INI file format,
; and passlib will only read the section named "passlib",
; so it can be included along with other application configuration.

[passlib]

; setup the context to support pbkdf2_sha256, and some other hashes:
schemes = pbkdf2_sha256, sha512_crypt, sha256_crypt, md5_crypt, des_crypt

; flag md5_crypt and des_crypt as deprecated
deprecated = md5_crypt, des_crypt

; set boundaries for the pbkdf2 rounds parameter
; (pbkdf2 hashes outside this range will be flagged as needs-updating)
pbkdf2_sha256__min_rounds = 10000
pbkdf2_sha256__max_rounds = 50000

; set the default rounds to use when hashing new passwords.
pbkdf2_sha1__default_rounds = 15000

; applications can choose to treat certain user accounts differently,
; by assigning different types of account to a 'user category',
; and setting special policy options for that category.
; this create a category named 'admin', which will have a larger default
; rounds value.
admin__pbkdf2_sha1__min_rounds = 18000
admin__pbkdf2_sha1__default_rounds = 20000

2.5.8.2 Initializing the CryptContext

Applications which choose to use a policy file will typically want to create the CryptContext at the module
level, and then load the configuration once the application starts:

1. Within a common module in your application (e.g. myapp.model.security):

#
create a crypt context that can be imported and used wherever is
→˓needed...
the instance will be configured later.
#
from passlib.context import CryptContext
user_pwd_context = CryptContext()

2. Within some startup function within your application:

#
when the app starts, import the context from step 1 and
configure it... such as by loading a policy file (see above)
#

from myapp.model.security import user_pwd_context

def myapp_startup():

#
... other code ...

(continues on next page)

24 Chapter 2. Walkthrough & Tutorials

Passlib Documentation, Release 1.8.0.dev0

(continued from previous page)

#

#
load configuration from some application-specified path
using load_path() ... or use the load() method, which can
load a dict or in-memory string containing the INI file.
#
##user_pwd_context.load(policy_config_string)
user_pwd_context.load_path(policy_config_path)

#
if you want to reconfigure the context without restarting the

→˓application,
simply repeat the above step at another point.
#

#
... other code ...
#

2.5.8.3 Encrypting New Passwords

When it comes time to create a new user’s password, insert the following code in the correct function:

from myapp.model.security import user_pwd_context

def handle_user_creation():

#
... other code ...
#

vars:
'secret' containing the putative password
'category' containing a category assigned to the user account
#

hash = user_pwd_context.hash(secret, category=category)

#... perform appropriate actions to store hash...

#
... other code ...
#

Note: In the above code, the ‘category’ kwd can be omitted entirely, OR set to a string matching a
user category specified in the policy file. In the latter case, any category-specific policy settings will be
enforced.

For the purposes of this example (and the sample config file listed above), it’s assumed this value will be
None for most users, and "admin" for special users. This namespace is entirely up to the application, it
just has to match the category names used in the config file.

See User Categories for more details.

2.5. CryptContext Tutorial 25

Passlib Documentation, Release 1.8.0.dev0

2.5.8.4 Verifying & Migrating Existing Passwords

Finally, when it comes time to check a users’ password, insert the following code at the correct place:

from myapp.model.security import user_pwd_context

def handle_user_login():

#
... other code ...
#

#
this example both checks the user's password AND upgrades deprecated

→˓hashes...
#
vars:
'hash' containing the specified user's hash.
'secret' containing the putative password
'category' containing a category assigned to the user account
#
NOTE: if the user account is missing, or has no hash,
you can pass ``hash=None`` to verify_and_update()
mask this from the attacker by simulating the delay
a real verification would have taken.
hash=None will never verify.

ok, new_hash = user_pwd_context.verify_and_update(secret, hash,
→˓category=category)

if not ok:
... password did not match. do mean things ...
pass

else:
#... password matched ...

if new_hash:
old hash was deprecated by policy.

... replace hash w/ new_hash for user account ...
pass

... do successful login actions ...

2.6 TOTP Tutorial

2.6.1 Overview

The passlib.totpmodule provides a set of classes for adding two-factor authentication (2FA) support
into your application, using the widely supported TOTP specification (RFC 6238).

This module is based around the TOTP class, which supports a wide variety of use-cases, including:

• Creating & transferring configured TOTP keys to client devices.

• Generating & verifying tokens.

26 Chapter 2. Walkthrough & Tutorials

https://tools.ietf.org/html/rfc6238.html

Passlib Documentation, Release 1.8.0.dev0

• Securely storing configured TOTP keys.

See also:

The passlib.totpAPI reference, which lists all details of all the classes and methods mentioned here.

2.6.2 Walkthrough

There are a number of different ways to integrate TOTP support into a server application. The following
is a general outline of one of way to do this. Some details and alternate choices are omitted for brevity,
see the remaining sections of this tutorial for more detailed information about these steps.

2.6.2.1 1. Generate an Application Secret

First, generate a strong application secret to use when encrypting TOTP keys for storage. Passlib offers a
generate_secret() method to help with this:

>>> from passlib.totp import generate_secret
>>> generate_secret()
'pO7SwEFcUPvIDeAJr7INBj0TjsSZJr1d2ddsFL9r5eq'

This key should be assigned a numeric tag (e.g. “1”, a timestamp, or an iso date such as “2016-11-10”);
and should be stored in a file separate from your application’s configuration. Ideally, after this file has
been loaded by the TOTP constructor below, the application should give up access permissions to the file.

Example file contents:

2016-11-10: pO7SwEFcUPvIDeAJr7INBj0TjsSZJr1d2ddsFL9r5eq

This key will be used in a later step to encrypt TOTP keys for storage in your database. The sequential
tag is used so that if your database (or the application secrets) are ever compromised, you can add a new
application secret (with a newer tag), and gracefully migrate the compromised TOTP keys.

See also:

For more details see Application Secrets (below).

2.6.2.2 2. TOTP Factory Initialization

When your application is being initialized, create a TOTP factory which is configured for your application,
and is set up to use the application secrets defined in step 1. You can also set a default issuer here, instead
of having to provide one explicitly in step 4:

>>> from passlib.totp import TOTP
>>> TotpFactory = TOTP.using(secrets_path='/path/to/secret/file/in/step/1',
... issuer="myapp.example.org")

The TotpFactory object returned by TOTP.using() is actually a subclass of TOTP itself, and has
the same methods and attributes. The main difference is that (because an application secret has been
provided), the TOTP key will automatically be encrypted / decrypted when serializing the object to disk.

See also:

For more details see Creating TOTP Instances (below).

2.6. TOTP Tutorial 27

Passlib Documentation, Release 1.8.0.dev0

2.6.2.3 3. Rate-Limiting & Cache Initialization

As part of your application initialization, it critically important to set up infrastructure to rate limit how
many token verification attempts a user / ip address is allowed to make, otherwise TOTP can be bypassed.

See also:

For more details see Why Rate-Limiting is Critical (below)

It’s also strongly recommended to set up a per-user cache which can store the last matched TOTP counter
(an integer) for a period of a few minutes (e.g. using dogpile.cache, memcached, redis, etc). This cache
is used by later steps to protect your application during a narrow window of time where TOTP would
otherwise be vulnerable to a replay attack.

See also:

For more details see Preventing Token Reuse (below)

2.6.2.4 4. Setting up TOTP for a User

To set up TOTP for a new user: create a new TOTP object and key using TOTP.new(). This can then
be rendered into a provisioning URI, and transferred to the user’s TOTP client of choice.

Rendering to a provisioning URI using TOTP.to_uri() requires picking an “issuer” string to uniquely
identify your application, and a “label” string to uniquely identify the user. The following example creates
a new TOTP instance with a new key, and renders it to a URI, plugging in application-specific information.

Using the TotpFactory object set up in step 2:

>>> totp = TotpFactory.new()
>>> uri = totp.to_uri(issuer="myapp.example.org", label="username")
>>> uri
'otpauth://totp/username?secret=D6RZI4ROAUQKJNAWQKYPN7W7LNV43GOT&
→˓issuer=myapp.example.org'

This URI is generally passed to a QRCode renderer, though as fallback it’s recommended to also display
the key using TOTP.pretty_key().

See also:

For more details, and more about QR Codes, see Configuring Clients (below).

2.6.2.5 5. Storing the TOTP object

Before enabling TOTP for the user’s account, it’s good practice to first have the user successfully verify a
token (per step 6); thus confirming their client h as been correctly configured.

Once this is done, you can store the TOTP object in your database. This can be done via the TOTP.
to_json() method:

>>> totp.to_json()
'{"enckey":{"c":14,"k":"FLEQC3VO6SIT3T7GN2GIG6ONPXADG5CZ","s":
→˓"UL2J4MZG4SONHOWXLKFQ","t":"1","v":1},"type":"totp","v":1}'

Note that if there is no application secret configured, the key will not be encrypted, and instead look like
this:

>>> totp.to_json()
'{"key":"D6RZI4ROAUQKJNAWQKYPN7W7LNV43GOT","type":"totp","v":1}'

28 Chapter 2. Walkthrough & Tutorials

https://pypi.python.org/pypi/dogpile.cache

Passlib Documentation, Release 1.8.0.dev0

To ensure you always save an encrypted token, you can use totp.to_json(encrypted=True).

See also:

For more details see Storing TOTP instances

2.6.2.6 6. Verifying a Token

Whenever attempting to verify a token provided by the user, first load the serialized TOTP object from
the database (stored step 5), as well as the last counter value from the cache (set up in step 3). You should
use these values to call the TOTP.verify() method.

If verify() succeeds, it will return a TotpMatch object. This object contains information about the match,
including TotpMatch.counter (a time-dependant integer tied to this token), and TotpMatch.
cache_seconds (minimum time this counter should be cached).

If verify() fails, it will raise one of the passlib.exc.TokenError subclasses indicating what went
wrong. This will be one of three cases: the token was malformed (e.g. too few digits), the token was
invalid (didn’t match), or a recent token was reused.

A skeleton example of how this should function:

>>> from passlib.exc import TokenError, MalformedTokenError

>>> # pull information from your application
>>> token = # ... token string provided by user ...
>>> source = # ... load totp json string from database ...
>>> last_counter = # ... load counter value from cache ...

>>> # ... check attempt rate limit for this account / address (per step 3
→˓above) ...

>>> # using the TotpFactory object defined in step 2, invoke verify
>>> try:
... match = TotpFactory.verify(token, source, last_counter=last_counter)
... except MalformedTokenError as err:
... # --- malformed token ---
... # * inform user, e.g. by displaying str(err)
... except TokenError as err:
... # --- invalid or reused token ---
... # * add to rate limit counter
... # * inform user, e.g. by displaying str(err)
... else:
... # --- successful match ---
... # * reset rate-limit counter
... # * store 'match.counter' in per-user cache for at least 'match.
→˓cache_seconds'

See also:

For more details see Verifying Tokens (below)

Alternate Caching Strategy

As an alternative to storing match.counter in the cache, applications using a cache such as mem-
cached may wish to simply set a key based on user + token for match.cache_seconds, and
reject any tokens coming in for that user who are marked in the cache.

2.6. TOTP Tutorial 29

Passlib Documentation, Release 1.8.0.dev0

In that case, they should run the tokens through TOTP.normalize_token() first, to make sure the
token strings are normalized before comparison. In this case, the skeleton example can be amended to:

>>> # pull information from your application
>>> token = # ... token string provided by user ...
>>> source = # ... load totp json string from database ...
>>> user_id = # ... user identifier for cache

>>> # ... check attempt rate limit for this account / address (per step 3
→˓above) ...

>>> # check token format
>>> try:
... token = TotpFactory.normalize_token(token)
... except MalformedTokenError as err:
... # --- malformed token ---
... # * inform user, e.g. by displaying str(err)
... return

>>> # check if token has been used, using app-defined present_in_cache()
→˓helper
>>> cache_key = "totp-token-%s-%s" % (user_id, token)
>>> if present_in_cache(cache_key):
... # * add to rate limit counter
... # * present 'token already used' message
... return

>>> # using the TotpFactory object defined in step 2, invoke verify
>>> try:
... match = TotpFactory.verify(token, source)
... except TokenError as err:
... # --- invalid token ---
... # * add to rate limit counter
... # * inform user, e.g. by displaying str(err)
... else:
... # --- successful match ---
... # * reset rate-limit counter
... # * set 'cache_key' in per-user cache for at least 'match.cache_
→˓seconds'

2.6.2.7 7. Reserializing Existing Objects

An organization’s security policy may require that a developer periodically change the application secret
key used to decrypt/encrypt TOTP objects. Alternately, the application secret may become compromised.

In either case, a new application secret will need to be created, and a new tag assigned (per step 1). Any
deprecated secret(s) will need to be retained in the collection passed to the TotpFactory, in order to
be able to decrypt existing TOTP objects.

Note: You can verify which secret is will be used to encrypt new keys by inspecting tag =
TotpFactory.wallet.default_tag.

Once the new secret has been added, you will need to update all the serialized TOTP objects in the
database, decrypting them using the old secret, and encrypting them with the new one.

30 Chapter 2. Walkthrough & Tutorials

Passlib Documentation, Release 1.8.0.dev0

This can be done in a few ways. The following skeleton example gives a simple loop that can be used,
which would ideally be run in a process that’s separate from your normal application:

>>> # presuming query_user_totp() queries your database for all user rows,
>>> # and update_user_totp() updates a specific row.
>>> for user_id, totp_source in query_user_totp():
>>> totp = TotpFactory.from_source(totp_source)
>>> if totp.changed:
>>> update_user_totp(user_id, totp.to_json())

This uses the TOTP.changed attribute, which is set to True if TOTP.from_source() (or other
constructor) detects the source data is encrypted with an old secret, is using outdated encryption settings,
or is stored in deprecated serialization format.

Some refinements that may need to be made for specific situations:

• For applications with a large number of users, it may be faster to accumulate (user_id, totp.
to_json()) pairs in a buffer, and do a bulk SQL update once every 100-1000 rows.

• Depending on the dbapi layer in use, it may take care of JSON serialization for you, in which case
you’ll need to use totp.to_dict() instead of totp.to_json().

Once all references to a deprecated secret have been replaced, it can be removed from the secrets file.

See also:

For more details see Step 1 (above), or Application Secrets (below)

2.6.3 Creating TOTP Instances

2.6.3.1 Direct Creation

Creating TOTP instances is straightforward: The TOTP class can be called directly to constructor a TOTP
instance from it’s component configuration:

>>> from passlib.totp import TOTP
>>> totp = TOTP(key='GVDOQ7NP6XPJWE4CWCLFFSXZH6DTAZWM', digits=9)
>>> totp.generate()
'29387414'

You can also use a number of the alternate constructors, such as TOTP.new() or TOTP.
from_source():

>>> # create new instance w/ automatically generated key
>>> totp = TOTP.new()

>>> # or deserializing it from a string (e.g. the output of TOTP.to_json)
>>> totp = TOTP.from_source('{"key":"D6RZI4ROAUQKJNAWQKYPN7W7LNV43GOT","type
→˓":"totp","v":1}')

Once created, you can inspect the object for it’s configuration and key:

>>> otp.base32_key
'GVDOQ7NP6XPJWE4CWCLFFSXZH6DTAZWM'
>>> otp.alg
"sha1"
>>> otp.period
30

2.6. TOTP Tutorial 31

Passlib Documentation, Release 1.8.0.dev0

If you want a non-standard alg or period, you can specify it via the constructor. You can also create TOTP
instances from an existing key (see the TOTP constructor’s key and format options for more details):

>>> otp2 = TOTP(new=True, period=60, alg="sha256")
>>> otp2.alg
'sha256'
>>> otp2.period
60

>>> otp3 = TOTP(key='GVDOQ7NP6XPJWE4CWCLFFSXZH6DTAZWM')

2.6.3.2 Using a Factory

Most applications will have some default configuration which they want all TOTP instances to have. This
includes application secrets (for encrypting TOTP keys for storage), or setting a default issuer label (for
rendering URIs).

Instead of having to call the TOTP constructor each time and provide all these options, you can use the
TOTP.using() method. This method takes in a number of the same options as the TOTP constructor,
and returns a TOTP subclass which has these options pre-programmed in as defaults:

>>> # here we create a TOTP factory with a random encryption secret and a
→˓default issuer
>>> from passlib.totp import TOTP, generate_secret
>>> TotpFactory = TOTP.using(issuer="myapp.example.org", secrets={"1":
→˓generate_secret()})

Since this object is a subclass of TOTP, you can use all it’s normal methods. The difference is that it will
integrate the information provided by using():

>>> totp = TotpFactory.new()
>>> totp.issuer
'myapp.example.org'

>>> totp.to_json()
'{"enckey":{"c":14,"k":"FLEQC3VO6SIT3T7GN2GIG6ONPXADG5CZ","s":
→˓"UL2J4MZG4SONHOWXLKFQ","t":"1","v":1},"type":"totp","v":1}'

In typical usage, a server application will want to create a TotpFactory as part of it’s initialization, and
then use that class for all operations, instead of referencing TOTP directly.

See also:

• Configuring Clients for details about the issuer option

• Storing TOTP instances for details about storage and key encryption

2.6.4 Configuring Clients

Once a TOTP instance & key has been generated on the server, it needs to be transferred to the client
TOTP program for installation. This can be done by having the user manually type the key into their
TOTP client, but an easier method is to render the TOTP configuration to a URI stored in a QR Code.

32 Chapter 2. Walkthrough & Tutorials

Passlib Documentation, Release 1.8.0.dev0

2.6.4.1 Rendering URIs

The KeyUriFormat is a de facto standard for encoding TOTP keys & configuration information into a
string. Once the URI is rendered as a QR Code, it can easily be imported into many smartphone clients
(such as Authy and Google Authenticator) via the smartphone’s camera.

When transferring the TOTP configuration this way, you will need to provide unique identifiers for both
your application, and the user’s account. This allows TOTP clients to distinguish this key from the others
in it’s database. This can be done via the issuer and label parameters of the TOTP.to_uri()
method.

The issuer string should be a globally unique label for your application (e.g. it’s domain name). Since
the issuer string shouldn’t change across users, you can create a customized TOTP factory, and provide it
with a default issuer. (If you skip this step, the issuer will need to be provided at every TOTP.to_uri()
call):

>>> from passlib.totp import TOTP
>>> TotpFactory = TOTP.using(issuer="myapp.example.org")

Once this is done, rendering to a provisioning URI just requires picking a label for the URI. This label
should identify the user within your application (e.g. their login or their email):

>>> # assume an existing TOTP instance has been created
>>> totp = TotpFactory.new()

>>> # serialize the object to a URI, along with label for user
>>> uri = totp.to_uri(label="demo-user")
>>> uri
'otpauth://totp/demo-user?secret=GVDOQ7NP6XPJWE4CWCLFFSXZH6DTAZWM&
→˓issuer=myapp.example.org'

2.6.4.2 Rendering QR Codes

This URI can then be encoded as a QR Code, using various python & javascript qrcode libraries. As an
example, the following uses PyQrCode to render the URI to the console as a text-based QR code:

>>> import pyqrcode
>>> uri = totp.to_uri(label="demo-user")
>>> print(pyqrcode.create(uri).terminal(quiet_zone=1))
... very large ascii-art qrcode here...

As a fallback to the QR Code, it’s recommended to alternately / also display the key itself, so that users
with camera-less TOTP clients can still enter it. The TOTP.pretty_key() method is provided to help
with this:

>>> totp.pretty_key()
'D6RZ-I4RO-AUQK-JNAW-QKYP-N7W7-LNV4-3GOT'

Note that if you use a non-default alg, digits, or period values, these should also be displayed next
to the key.

2.6.4.3 Parsing URIs

On the client side, passlib offers the TOTP.from_uri() constructor creating a TOTP object from a
provisioning URI. This can also be useful for testing URI encoding & output during development:

2.6. TOTP Tutorial 33

https://github.com/google/google-authenticator/wiki/Key-Uri-Format
https://pypi.python.org/pypi/PyQRCode

Passlib Documentation, Release 1.8.0.dev0

>>> # create new TOTP instance from a provisioning uri:
>>> from passlib.totp import TOTP
>>> totp = TOTP.from_uri('otpauth://totp/demo-user?
→˓secret=GVDOQ7NP6XPJWE4CWCLFFSXZH6DTAZWM&issuer=myapp.example.org')
>>> otp.base32_key
'GVDOQ7NP6XPJWE4CWCLFFSXZH6DTAZWM'
>>> otp.alg
"sha1"
>>> otp.period
30
>>> otp.generate().token
'897453'

2.6.5 Storing TOTP instances

Once a TOTP object has been created, it inevitably needs to be stored in a database. Using to_uri()
to serialize it to a URI has a few disadvantages - it always includes an issuer & a label (wasting storage
space), and it stores the key in an unencrypted format.

2.6.5.1 JSON Serialization

To help with this passlib offers a way to serialize TOTP objects to and from a simple JSON format, which
can optionally encrypt the keys for storage.

To serialize a TOTP object to a string, use TOTP.to_json():

>>> from passlib.totp import TOTP
>>> totp = TOTP.new()
>>> data = totp.to_json()
>>> data
'{"key":"GVDOQ7NP6XPJWE4CWCLFFSXZH6DTAZWM","type":"totp","v":1}'

This string can be stored in a database, and then deserialized as needed using the TOTP.from_json()
constructor:

>>> totp2 = TOTP.from_json(data)
>>> totp2.base32_key
'GVDOQ7NP6XPJWE4CWCLFFSXZH6DTAZWM'

There are also corresponding TOTP.to_dict() and TOTP.from_dict() methods for applications
that want to serialize the object without converting it all the way into a JSON string.

Caution: The above procedure should only be used for development purposes, as it will NOT encrypt
the keys; and the IETF strongly recommends encrypting the keys for storage (RFC-6238 sec 5.1).
Encrypting the keys is covered below.

2.6.5.2 Application Secrets

The one thing lacking about the example above is that the resulting data contained the plaintext key. If
the server were compromised, the TOTP keys could be used directly to impersonate the user. To solve
this, Passlib offers a method for providing an application-wide secret that TOTP.to_json() will use
to encrypt keys.

34 Chapter 2. Walkthrough & Tutorials

https://tools.ietf.org/html/rfc6238#section-5.1

Passlib Documentation, Release 1.8.0.dev0

Per Step 1 of the walkthrough (above), applications can use the generate_secret() helper to create
new secrets. All existing secrets (the current one, and any deprecated / compromised ones) should be
assigned an identifying tag, and stored in a dict or file.

Ideally, these secrets should be stored in a location which the application’s process does not have access
to once it has been initialized. Once this data is loaded, applications can create a factory function using
TOTP.using(), and provide these secrets as part of it’s arguments. This can take the form of a file
path, a loaded string, or a dictionary:

>>> # load from dict
>>> from passlib.totp import TOTP
>>> TotpFactory = TOTP.using(secrets={"1": "
→˓'pO7SwEFcUPvIDeAJr7INBj0TjsSZJr1d2ddsFL9r5eq'"})

>>> # load from filepath
>>> TotpFactory = TOTP.using(secrets_path="/path/to/secret/file")

The secrets and secrets_path values can be anything accepted by the AppWallet constructor
(the internal class that’s used to load & store the application secrets in memory). An instance of this object
is accessible for inspection from the TOTP.wallet attribute of each factory:

>>> TotpFactory.wallet
<passlib.totp.AppWallet at 0x2ba5310>

2.6.5.3 Encrypting Keys

Once you have a TOTP factory configured with one or more application secrets, any objects you create
through the factory will automatically have access to the application secrets, and will use them to encrypt
the key when serializing to json.

Assuming TotpFactory is set up from the previous step, contrast the output of this with the plain JSON
serialization example above:

>>> totp = TotpFactory.new()
>>> data = totp.to_json()
>>> data
'{"enckey":{"c":14,"k":"FLEQC3VO6SIT3T7GN2GIG6ONPXADG5CZ","s":
→˓"UL2J4MZG4SONHOWXLKFQ","t":"1","v":1},"type":"totp","v":1}'

This data can be stored in the database like normal, but will require access to the application secret in
order to decrypt:

>>> data = '{"enckey":{"c":14,"k":"FLEQC3VO6SIT3T7GN2GIG6ONPXADG5CZ","s":
→˓"UL2J4MZG4SONHOWXLKFQ","t":"1","v":1},"type":"totp","v":1}'
>>> totp = TotpFactory.from_source(data)
>>> totp.base32_key
'FLEQC3VO6SIT3T7GN2GIG6ONPXADG5CZ'

Whereas trying to decode without a secret configured will result in:

>>> totp = TOTP.from_source(data)
...
TypeError: no application secrets present, can't decrypt TOTP key

Note that when loading TOTP objects this way, you can check the TOTP.changed attr to see if the
object needs to be re-serialized (e.g. deprecated secret, too few encryption rounds, deprecated serialization
format).

2.6. TOTP Tutorial 35

Passlib Documentation, Release 1.8.0.dev0

2.6.6 Generating Tokens (Client-Side Only)

Finally, the whole point of TOTP: generating and verifying tokens. The TOTP protocol generates a new
time & key -dependant token every <period> seconds (usually 30).

Generating a totp token is done with the TOTP.generate() method, which returns a TotpToken in-
stance. This object looks and acts like a tuple of (token, expire_time), but offers some additional
informational attributes:

>>> from passlib import totp
>>> otp = TOTP(key='GVDOQ7NP6XPJWE4CWCLFFSXZH6DTAZWM')

>>> # generate a TOTP token for the current timestamp
>>> # (your output will vary based on system time)
>>> otp.generate()
<TotpToken token='589720' expire_time=1475342400>

>>> # to get just the token, not the TotpToken instance...
>>> otp.generate().token
'359275'

>>> # you can generate a token for a specific time as well...
>>> otp.generate(time=1475338840).token
'359275'

See also:

For more details, see the TOTP.generate() method.

2.6.7 Verifying Tokens

In order for successful authentication, the user must generate the token on the client, and provide it to
your server before the TOTP.period ends.

Since this there will always be a little transmission delay (and sometimes client clock drift) TOTP verifi-
cation usually uses a small verification window, allowing a user to enter a token a few seconds after the
period has ended. This window is usually kept as small as possible, and in passlib defaults to 30 seconds.

2.6.7.1 Match & Verify

To verify a token a user has provided, you can use the TOTP.match() method. If unsuccessful, a
passlib.exc.TokenError subclass will be raised. If successful, this will return a TotpMatch
instance, with details about the match. This object acts like a tuple of (counter, timestamp), but
offers some additional informational attributes:

>>> # NOTE: all of the following was done at a fixed time, to make these
>>> # examples repeatable. in real-world use, you would omit the 'time
→˓' parameter
>>> # from all these calls.

>>> # assuming TOTP key & config was deserialized from database store
>>> from passlib import totp
>>> otp = TOTP(key='GVDOQ7NP6XPJWE4CWCLFFSXZH6DTAZWM')

>>> # user provides malformed token:
>>> otp.match('359', time=1475338840)

(continues on next page)

36 Chapter 2. Walkthrough & Tutorials

Passlib Documentation, Release 1.8.0.dev0

(continued from previous page)

...
MalformedTokenError: Token must have exactly 6 digits

>>> # user provides token that isn't valid w/in time window:
>>> otp.match('123456', time=1475338840)
...
InvalidTokenError: Token did not match

>>> # user provides correct token
>>> otp.match('359275', time=1475338840)
<TotpMatch counter=49177961 time=1475338840 cache_seconds=60>

As a further optimization, the TOTP.verify() method allows deserializing and matching a token in a
single step. Not only does this save a little code, it has a signature much more similar to that of Passlib’s
passlib.ifc.PasswordHash.verify().

Typically applications will provide the TOTP key in whatever format it’s stored by the server. This will
usually be a JSON string (as output by TOTP.to_json()), but can be any format accepted by TOTP.
from_source(). As an example:

>>> # application loads json-serialized TOTP key
>>> from passlib.totp import TOTP
>>> totp_source = '{"v": 1, "type": "totp", "key": "otxl2f5cctbprpzx"}'

>>> # parse & match the token in a single call
>>> match = TOTP.verify('123456', totp_source)

See also:

For more details, see the TOTP.match() and TOTP.verify() methods.

2.6.7.2 Preventing Token Reuse

Even if an attacker is able to observe a user entering a TOTP token, it will do them no good once period
+ window seconds have passed (typically 60). This is because the current time will now have advanced
far enough that TOTP.match() will never match against the stolen token.

However, this leaves a small window in which the attacker can observe and replay a token, success-
fully impersonating the user. To prevent this, applications are strongly encouraged to record the latest
TotpMatch.counter value that’s returned by the TOTP.match() method.

This value should be stored per-user in a temporary cache for at least period + window sec-
onds. (This is typically 60 seconds, but for an exact value, applications may check the TotpMatch.
cache_seconds value returned by the TOTP.match() method).

Any subsequent calls to verify should check this cache, and pass in that value to TOTP.match()’s
“last_counter” parameter (or None if no value found). Doing so will ensure that tokens can only be used
once, preventing replay attacks.

As an example:

>>> # NOTE: all of the following was done at a fixed time, to make these
>>> # examples repeatable. in real-world use, you would omit the 'time
→˓' parameter
>>> # from all these calls.

(continues on next page)

2.6. TOTP Tutorial 37

Passlib Documentation, Release 1.8.0.dev0

(continued from previous page)

>>> # assuming TOTP key & config was deserialized from database store
>>> from passlib.totp import TOTP
>>> otp = TOTP(key='GVDOQ7NP6XPJWE4CWCLFFSXZH6DTAZWM')

>>> # retrieve per-user counter from cache
>>> last_counter = ...consult application cache...

>>> # if user provides valid value, a TotpMatch object will be returned.
>>> # (if they provide an invalid value, a TokenError will be raised).
>>> match = otp.match('359275', last_counter=last_counter, time=1475338830)
>>> match.counter
49177961
>>> match.cache_seconds
60

>>> # application should now cache the new 'match.counter' value
>>> # for at least 'match.cache_seconds'.

>>> # now that last_counter has been properly updated: say that
>>> # 10 seconds later attacker attempts to re-use token user just entered:
>>> last_counter = 49177961
>>> match = otp.match('359275', last_counter=last_counter, time=1475338840)
...
UsedTokenError: Token has already been used, please wait for another.

See also:

For more details, see the TOTP.match() method; for more examples, see Step 6 above.

2.6.7.3 Why Rate-Limiting is Critical

The TOTP.match() method offers a window parameter, expanding the search range to account for the
client getting slightly out of sync.

While it’s tempting to be user-friendly, and make this window as large as possible, there is a security
downside: Since any token within the window will be treated as valid, the larger you make the window,
the more likely it is that an attacker will be able to guess the correct token by random luck.

Because of this, it’s critical for applications implementing OTP to rate-limit the number of attempts
on an account, since an unlimited number of attempts guarantees an attacker will be able to guess any
given token.

The Gory Details

For TOTP, the formula is odds = guesses * (1 + 2 * window / period) /
10**digits; where window in this case is the TOTP.match() window (measured in seconds), and
period is the number of seconds before the token is rotated.

This formula can be inverted to give the maximum window we want to allow for a given configuration, rate
limit, and desired odds: max_window = floor((odds * 10**digits / guesses - 1) *
period / 2).

For example (assuming TOTP with 7 digits and 30 second period), if you want an attacker’s odds to be
no better than 1 in 10000, and plan to lock an account after 4 failed attempts – the maximum window you
should use would be floor((1/10000 * 10**6 / 4 - 1) * 30 / 2) or 360 seconds.

38 Chapter 2. Walkthrough & Tutorials

CHAPTER 3

API Reference

The reference section contains documentation of Passlib’s public API. These chapters are focused on providing de-
tailed reference of the individual functions and classes; they will generally be cross-linked to any related walkthrough
documentation (which tries to provide a higher-level synthetic view).

Note: Primary modules:

The primary modules that will be of interest are:

• passlib.hash

• passlib.context

• passlib.totp

• passlib.exc

Caution: Internal modules:

The following modules are mainly used internally, may change structure between releases, and are documented
mainly for completeness:

• passlib.crypto

• passlib.registry

• passlib.utils

Alphabetical module list:

39

Passlib Documentation, Release 1.8.0.dev0

3.1 passlib.apache - Apache Password Files

This module provides utilities for reading and writing Apache’s htpasswd and htdigest files; though the use of two
helper classes.

Changed in version 1.6: The api for this module was updated to be more flexible, and to have less ambiguous method
names. The old method and keyword names are deprecated, and will be removed in Passlib 1.8.

Changed in version 1.7: These classes will now preserve blank lines and “#” comments when updating htpasswd files;
previous releases would throw a parse error.

Changed in version 1.8: A number of methods deprecated since 1.6, have been removed.

3.1.1 Htpasswd Files

The HTpasswdFile class allows managing of htpasswd files. A quick summary of its usage:

>>> from passlib.apache import HtpasswdFile

>>> # when creating a new file, set to new=True, add entries, and save.
>>> ht = HtpasswdFile("test.htpasswd", new=True)
>>> ht.set_password("someuser", "really secret password")
>>> ht.save()

>>> # loading an existing file to update a password
>>> ht = HtpasswdFile("test.htpasswd")
>>> ht.set_password("someuser", "new secret password")
>>> ht.save()

>>> # examining file, verifying user's password
>>> ht = HtpasswdFile("test.htpasswd")
>>> ht.users()
["someuser"]
>>> ht.check_password("someuser", "wrong password")
False
>>> ht.check_password("someuser", "new secret password")
True

>>> # making in-memory changes and exporting to string
>>> ht = HtpasswdFile()
>>> ht.set_password("someuser", "mypass")
>>> ht.set_password("someuser", "anotherpass")
>>> print ht.to_string()
someuser:$apr1$T4f7D9ly$EobZDROnHblCNPCtrgh5i/
anotheruser:$apr1$vBdPWvh1$GrhfbyGvN/7HalW5cS9XB1

Warning: HtpasswdFile currently defaults to using apr_md5_crypt, as this is the only htpasswd hash
guaranteed to be portable across operating systems. However, for security reasons Passlib 1.7 will default to using
the strongest algorithm available on the host platform (e.g. bcrypt or sha256_crypt). Applications that
are relying on the old behavior should specify HtpasswdFile(default_scheme="portable") (new in
Passlib 1.6.3).

class passlib.apache.HtpasswdFile(path=None, new=False, autosave=False, ...)
class for reading & writing Htpasswd files.

40 Chapter 3. API Reference

Passlib Documentation, Release 1.8.0.dev0

The class constructor accepts the following arguments:

Parameters

• path (filepath) – Specifies path to htpasswd file, use to implicitly load from and save
to.

This class has two modes of operation:

1. It can be “bound” to a local file by passing a path to the class constructor. In this case
it will load the contents of the file when created, and the load() and save() methods
will automatically load from and save to that file if they are called without arguments.

2. Alternately, it can exist as an independant object, in which case load() and save()
will require an explicit path to be provided whenever they are called. As well, autosave
behavior will not be available.

This feature is new in Passlib 1.6, and is the default if no path value is provided to the
constructor.

This is also exposed as a readonly instance attribute.

• new (bool) – Normally, if path is specified, HtpasswdFile will immediately load the
contents of the file. However, when creating a new htpasswd file, applications can set
new=True so that the existing file (if any) will not be loaded.

New in version 1.6: This feature was previously enabled by setting autoload=False.
That alias was removed in Passlib 1.8

• autosave (bool) – Normally, any changes made to an HtpasswdFile instance will
not be saved until save() is explicitly called. However, if autosave=True is specified,
any changes made will be saved to disk immediately (assuming path has been set).

This is also exposed as a writeable instance attribute.

• encoding (str) – Optionally specify character encoding used to read/write file and hash
passwords. Defaults to utf-8, though latin-1 is the only other commonly encountered
encoding.

This is also exposed as a readonly instance attribute.

• default_scheme (str) – Optionally specify default scheme to use when encoding new
passwords.

This can be any of the schemes with builtin Apache support, OR natively supported by the
host OS’s crypt.crypt() function.

– Builtin schemes include "bcrypt" (apache 2.4+), "apr_md5_crypt"`, and
``"des_crypt".

– Schemes commonly supported by Unix hosts include "bcrypt", "sha256_crypt",
and "des_crypt".

In order to not have to sort out what you should use, passlib offers a number of aliases, that
will resolve to the most appropriate scheme based on your needs:

– "portable", "portable_apache_24" – pick scheme that’s portable across hosts
running apache >= 2.4. This will be the default as of Passlib 2.0.

– "portable_apache_22" – pick scheme that’s portable across hosts running apache
>= 2.4. This is the default up to Passlib 1.9.

– "host", "host_apache_24" – pick strongest scheme supported by apache >=
2.4 and/or host OS.

3.1. passlib.apache - Apache Password Files 41

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/crypt.html#crypt.crypt

Passlib Documentation, Release 1.8.0.dev0

– "host_apache_22" – pick strongest scheme supported by apache >= 2.2 and/or
host OS.

New in version 1.6: This keyword was previously named default. That alias was re-
moved in Passlib 1.8.

Changed in version 1.6.3: Added support for "bcrypt", "sha256_crypt", and
"portable" alias.

Changed in version 1.7: Added apache 2.4 semantics, and additional aliases.

• context (CryptContext) – CryptContext instance used to create and verify the
hashes found in the htpasswd file. The default value is a pre-built context which supports all
of the hashes officially allowed in an htpasswd file.

This is also exposed as a readonly instance attribute.

Warning: This option may be used to add support for non-standard hash formats to
an htpasswd file. However, the resulting file will probably not be usable by another
application, and particularly not by Apache.

3.1.1.1 Loading & Saving

load(path=None)
Load state from local file. If no path is specified, attempts to load from self.path.

Parameters path (str) – local file to load from

load_if_changed()
Reload from self.path only if file has changed since last load

load_string(data)
Load state from unicode or bytes string, replacing current state

save(path=None)
Save current state to file. If no path is specified, attempts to save to self.path.

to_string()
Export current state as a string of bytes

3.1.1.2 Inspection

users()
Return list of all users in database

check_password(user, password)
Verify password for specified user. If algorithm marked as deprecated by CryptContext, will automatically
be re-hashed.

Returns

• None if user not found.

• False if user found, but password does not match.

• True if user found and password matches.

Changed in version 1.6: This method was previously called verify, it was renamed to prevent ambiguity
with the CryptContext method. The old alias was removed in Passlib 1.8.

42 Chapter 3. API Reference

https://docs.python.org/3/library/stdtypes.html#str

Passlib Documentation, Release 1.8.0.dev0

get_hash(user)
Return hash stored for user, or None if user not found.

Changed in version 1.6: This method was previously named find, it was renamed for clarity. The old
name was removed in Passlib 1.8.

3.1.1.3 Modification

set_password(user, password)
Set password for user; adds user if needed.

Returns

• True if existing user was updated.

• False if user account was added.

Changed in version 1.6: This method was previously called update, it was renamed to prevent ambiguity
with the dictionary method. The old alias was removed in Passlib 1.8.

delete(user)
Delete user’s entry.

Returns

• True if user deleted.

• False if user not found.

3.1.1.4 Alternate Constructors

classmethod from_string(data, **kwds)
create new object from raw string.

Parameters

• data (str or bytes) – database to load, as single string.

• **kwds – all other keywords are the same as in the class constructor

3.1.1.5 Attributes

path
Path to local file that will be used as the default for all load() and save() operations. May be written
to, initialized by the path constructor keyword.

autosave
Writeable flag indicating whether changes will be automatically written to path.

3.1.1.6 Errors

Raises ValueError – All of the methods in this class will raise a ValueError if any user name
contains a forbidden character (one of :\r\n\t\x00), or is longer than 255 characters.

3.1. passlib.apache - Apache Password Files 43

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

Passlib Documentation, Release 1.8.0.dev0

3.1.2 Htdigest Files

The HtdigestFile class allows management of htdigest files in a similar fashion to HtpasswdFile.

class passlib.apache.HtdigestFile(path, default_realm=None, new=False, autosave=False,
...)

class for reading & writing Htdigest files.

The class constructor accepts the following arguments:

Parameters

• path (filepath) – Specifies path to htdigest file, use to implicitly load from and save to.

This class has two modes of operation:

1. It can be “bound” to a local file by passing a path to the class constructor. In this case
it will load the contents of the file when created, and the load() and save() methods
will automatically load from and save to that file if they are called without arguments.

2. Alternately, it can exist as an independant object, in which case load() and save()
will require an explicit path to be provided whenever they are called. As well, autosave
behavior will not be available.

This feature is new in Passlib 1.6, and is the default if no path value is provided to the
constructor.

This is also exposed as a readonly instance attribute.

• default_realm (str) – If default_realm is set, all the HtdigestFile methods
that require a realm will use this value if one is not provided explicitly. If unset, they will
raise an error stating that an explicit realm is required.

This is also exposed as a writeable instance attribute.

New in version 1.6.

• new (bool) – Normally, if path is specified, HtdigestFile will immediately load the
contents of the file. However, when creating a new htpasswd file, applications can set
new=True so that the existing file (if any) will not be loaded.

New in version 1.6: This feature was previously enabled by setting autoload=False.
That alias was removed in Passlib 1.8

• autosave (bool) – Normally, any changes made to an HtdigestFile instance will
not be saved until save() is explicitly called. However, if autosave=True is specified,
any changes made will be saved to disk immediately (assuming path has been set).

This is also exposed as a writeable instance attribute.

• encoding (str) – Optionally specify character encoding used to read/write file and hash
passwords. Defaults to utf-8, though latin-1 is the only other commonly encountered
encoding.

This is also exposed as a readonly instance attribute.

3.1.2.1 Loading & Saving

load(path=None)
Load state from local file. If no path is specified, attempts to load from self.path.

Parameters path (str) – local file to load from

44 Chapter 3. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Passlib Documentation, Release 1.8.0.dev0

load_if_changed()
Reload from self.path only if file has changed since last load

load_string(data)
Load state from unicode or bytes string, replacing current state

save(path=None)
Save current state to file. If no path is specified, attempts to save to self.path.

to_string()
Export current state as a string of bytes

3.1.2.2 Inspection

realms()
Return list of all realms in database

users(realm=None)
Return list of all users in specified realm.

• uses self.default_realm if no realm explicitly provided.

• returns empty list if realm not found.

check_password(user[, realm], password)
Verify password for specified user + realm.

If self.default_realm has been set, this may be called with the syntax
check_password(user, password), otherwise it must be called with all three arguments:
check_password(user, realm, password).

Returns

• None if user or realm not found.

• False if user found, but password does not match.

• True if user found and password matches.

Changed in version 1.6: This method was previously called verify, it was renamed to prevent ambiguity
with the CryptContext method. The old alias was removed in Passlib 1.8.

get_hash(user, realm=None)
Return htdigest hash stored for user.

• uses self.default_realm if no realm explicitly provided.

• returns None if user or realm not found.

Changed in version 1.6: This method was previously named find, it was renamed for clarity. The old
name is was removed Passlib 1.8.

3.1.2.3 Modification

set_password(user[, realm], password)
Set password for user; adds user & realm if needed.

If self.default_realm has been set, this may be called with the syntax set_password(user,
password), otherwise it must be called with all three arguments: set_password(user, realm,
password).

Returns

3.1. passlib.apache - Apache Password Files 45

Passlib Documentation, Release 1.8.0.dev0

• True if existing user was updated

• False if user account added.

delete(user, realm=None)
Delete user’s entry for specified realm.

if realm is not specified, uses self.default_realm.

Returns

• True if user deleted,

• False if user not found in realm.

delete_realm(realm)
Delete all users for specified realm.

if realm is not specified, uses self.default_realm.

Returns number of users deleted (0 if realm not found)

3.1.2.4 Alternate Constructors

classmethod from_string(data, **kwds)
create new object from raw string.

Parameters

• data (str or bytes) – database to load, as single string.

• **kwds – all other keywords are the same as in the class constructor

3.1.2.5 Attributes

default_realm
The default realm that will be used if one is not provided to methods that require it. By default this is
None, in which case an explicit realm must be provided for every method call. Can be written to.

path
Path to local file that will be used as the default for all load() and save() operations. May be written
to, initialized by the path constructor keyword.

autosave
Writeable flag indicating whether changes will be automatically written to path.

3.1.2.6 Errors

Raises ValueError – All of the methods in this class will raise a ValueError if any user
name or realm contains a forbidden character (one of :\r\n\t\x00), or is longer than 255
characters.

3.2 passlib.apps - Helpers for various applications

This module contains a number of preconfigured CryptContext instances that are provided by Passlib for easily han-
dling the hash formats used by various applications.

46 Chapter 3. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

Passlib Documentation, Release 1.8.0.dev0

3.2.1 Usage Example

The CryptContext class itself has a large number of features, but to give an example of how to quickly use the
instances in this module:

Each of the objects in this module can be imported directly:

>>> # as an example, this imports the custom_app_context object,
>>> # a helper to let new applications *quickly* add password hashing.
>>> from passlib.apps import custom_app_context

Hashing a password is simple (and salt generation is handled automatically):

>>> hash = custom_app_context.hash("toomanysecrets")
>>> hash
'5rounds=84740$fYChCy.52EzebF51$9bnJrmTf2FESI93hgIBFF4qAfysQcKoB0veiI0ZeYU4'

Verifying a password against an existing hash is just as quick:

>>> custom_app_context.verify("toomanysocks", hash)
False
>>> custom_app_context.verify("toomanysecrets", hash)
True

See also:

the CryptContext Tutorial and CryptContext Reference for more information about the CryptContext class.

3.2.2 Django

The following objects provide pre-configured CryptContext instances for handling Django password hashes, as
used by Django’s django.contrib.auth module. They recognize all the builtin Django hashes supported by the
particular Django version.

Note: These objects may not match the hashes in your database if a third-party library has been used to patch Django
to support alternate hash formats. This includes the django-bcrypt plugin, or Passlib’s builtin django extension.
As well, Django 1.4 introduced a very configurable “hashers” framework, and individual deployments may support
additional hashes and/or have other defaults.

passlib.apps.django10_context
The object replicates the password hashing policy for Django 1.0-1.3. It supports all the Django 1.0 hashes, and
defaults to django_salted_sha1.

New in version 1.6.

passlib.apps.django14_context
The object replicates the stock password hashing policy for Django 1.4. It supports all the Django 1.0 & 1.4
hashes, and defaults to django_pbkdf2_sha256. It treats all Django 1.0 hashes as deprecated.

New in version 1.6.

passlib.apps.django16_context
The object replicates the stock password hashing policy for Django 1.6. It supports all the Django 1.0-1.6
hashes, and defaults to django_pbkdf2_sha256. It treats all Django 1.0 hashes as deprecated.

New in version 1.6.2.

3.2. passlib.apps - Helpers for various applications 47

http://www.djangoproject.com
http://pypi.python.org/pypi/django-bcrypt

Passlib Documentation, Release 1.8.0.dev0

passlib.apps.django_context
This alias will always point to the latest preconfigured Django context supported by Passlib, and as such should
support all historical hashes built into Django.

Changed in version 1.6.2: This now points to django16_context.

3.2.3 LDAP

Passlib provides two contexts related to ldap hashes:

passlib.apps.ldap_context
This object provides a pre-configured CryptContext instance for handling LDAPv2 password hashes. It
recognizes all the standard ldap hashes.

It defaults to using the {SSHA} password hash. For times when there should be another default, using code
such as the following:

>>> from passlib.apps import ldap_context
>>> ldap_context = ldap_context.replace(default="ldap_salted_md5")

>>> # the new context object will now default to {SMD5}:
>>> ldap_context.hash("password")
'{SMD5}T9f89F591P3fFh1jz/YtW4aWD5s='

passlib.apps.ldap_nocrypt_context
This object recognizes all the standard ldap schemes that ldap_context does, except for the {CRYPT}-based
schemes.

3.2.4 MySQL

This module provides two pre-configured CryptContext instances for handling MySQL user passwords:

passlib.apps.mysql_context
This object should recognize the new mysql41 hashes, as well as any legacy mysql323 hashes.

It defaults to mysql41 when generating new hashes.

This should be used with MySQL version 4.1 and newer.

passlib.apps.mysql3_context
This object is for use with older MySQL deploys which only recognize the mysql323 hash.

This should be used only with MySQL version 3.2.3 - 4.0.

3.2.5 PHPass

PHPass is a PHP password hashing library, and hashes derived from it are found in a number of PHP applications. It
is found in a wide range of PHP applications, including Drupal and Wordpress.

passlib.apps.phpass_context
This object following the standard PHPass logic: it supports bcrypt, bsdi_crypt, and implements an
custom scheme called the “phpass portable hash” phpass as a fallback.

BCrypt is used as the default if support is available, otherwise the Portable Hash will be used as the default.

Changed in version 1.5: Now uses Portable Hash as fallback if BCrypt isn’t available. Previously used BSDI-
Crypt as fallback (per original PHPass implementation), but it was decided PHPass is in fact more secure.

48 Chapter 3. API Reference

http://www.openwall.com/phpass/

Passlib Documentation, Release 1.8.0.dev0

passlib.apps.phpbb3_context
This object supports phpbb3 password hashes, which use a variant of phpass.

3.2.6 PostgreSQL

passlib.apps.postgres_context
This object should recognize password hashes stores in PostgreSQL’s pg_shadow table; which are all assumed
to follow the postgres_md5 format.

Note that the username must be provided whenever hashing or verifying a postgres hash:

>>> from passlib.apps import postgres_context

>>> # hashing a password...
>>> postgres_context.hash("somepass", user="dbadmin")
'md578ed0f0ab2be0386645c1b74282917e7'

>>> # verifying a password...
>>> postgres_context.verify("somepass", 'md578ed0f0ab2be0386645c1b74282917e7',
→˓user="dbadmin")
True
>>> postgres_context.verify("wrongpass", 'md578ed0f0ab2be0386645c1b74282917e7',
→˓user="dbadmin")
False

>>> # forgetting the user will result in an error:
>>> postgres_context.hash("somepass")
Traceback (most recent call last):

<traceback omitted>
TypeError: user must be unicode or bytes, not None

3.2.7 Roundup

The Roundup Issue Tracker has long supported a series of different methods for encoding passwords. The following
contexts are available for reading Roundup password hash fields:

passlib.apps.roundup10_context
This object should recognize all password hashes used by Roundup 1.4.16 and earlier: ldap_hex_sha1 (the
default), ldap_hex_md5, ldap_des_crypt, and roundup_plaintext.

passlib.apps.roundup15_context
Roundup 1.4.17 adds support for ldap_pbkdf2_sha1 as its preferred hash format. This context supports all
the roundup10_context hashes, but adds that hash as well (and uses it as the default).

passlib.apps.roundup_context
this is an alias for the latest version-specific roundup context supported by passlib, currently the
roundup15_context.

3.2.8 Custom Applications

passlib.apps.custom_app_context
This CryptContext object is provided for new python applications to quickly and easily add password hash-
ing support. It comes preconfigured with:

• Support for sha256_crypt and sha512_crypt

3.2. passlib.apps - Helpers for various applications 49

http://www.roundup-tracker.org

Passlib Documentation, Release 1.8.0.dev0

• Defaults to SHA256-Crypt under 32 bit systems, SHA512-Crypt under 64 bit systems.

• Large number of rounds, for increased time-cost to hedge against attacks.

For applications which want to quickly add a password hash, all they need to do is import and use this object,
per the usage example at the top of this page.

See also:

The New Application Quickstart Guide for additional details.

3.3 passlib.context - CryptContext Hash Manager

This page provides a complete reference of all the methods and options supported by the CryptContext class and
helper utilities.

See also:

• CryptContext Tutorial – overview of this class and walkthrough of how to use it.

3.3.1 The CryptContext Class

class passlib.context.CryptContext(schemes=None, **kwds)
Helper for hashing passwords using different algorithms.

At its base, this is a proxy object that makes it easy to use multiple PasswordHash objects at the same time.
Instances of this class can be created by calling the constructor with the appropriate keywords, or by using one
of the alternate constructors, which can load directly from a string or a local file. Since this class has so many
options and methods, they have been broken out into subsections:

• Constructor Keywords – all the keywords this class accepts.

– Context Options – options affecting the Context itself.

– Algorithm Options – options controlling the wrapped hashes.

• Primary Methods – the primary methods most applications need.

• Hash Migration – methods for automatically replacing deprecated hashes.

• Alternate Constructors – creating instances from strings or files.

• Changing the Configuration – altering the configuration of an existing context.

• Examining the Configuration – programmatically examining the context’s settings.

• Saving the Configuration – exporting the context’s current configuration.

• Configuration Errors – overview of errors that may be thrown by CryptContext constructor

3.3.1.1 Constructor Keywords

The CryptContext class accepts the following keywords, all of which are optional. The keywords are divided into
two categories: context options, which affect the CryptContext itself; and algorithm options, which place defaults and
limits on the algorithms used by the CryptContext.

50 Chapter 3. API Reference

Passlib Documentation, Release 1.8.0.dev0

Context Options

Options which directly affect the behavior of the CryptContext instance:

schemes List of algorithms which the instance should support.

The most important option in the constructor, This option controls what hashes can be used by the hash()
method, which hashes will be recognized by verify() and identify(), and other effects throughout the
instance. It should be a sequence of names, drawn from the hashes in passlib.hash. Listing an unknown
name will cause a ValueError. You can use the schemes() method to get a list of the currently configured
algorithms. As an example, the following creates a CryptContext instance which supports the sha256_crypt
and des_crypt schemes:

>>> from passlib.context import CryptContext
>>> myctx = CryptContext(schemes=["sha256_crypt", "des_crypt"])
>>> myctx.schemes()
("sha256_crypt", "des_crypt")

Note: The order of the schemes is sometimes important, as identify() will run through the schemes from
first to last until an algorithm “claims” the hash. So plaintext algorithms and the like should be listed at the end.

See also:

the Basic Usage example in the tutorial.

default Specifies the name of the default scheme.

This option controls which of the configured schemes will be used as the default when creating new hashes.
This parameter is optional; if omitted, the first non-deprecated algorithm in schemes will be used. You can
use the default_scheme() method to retrieve the name of the current default scheme. As an example, the
following demonstrates the effect of this parameter on the hash() method:

>>> from passlib.context import CryptContext
>>> myctx = CryptContext(schemes=["sha256_crypt", "md5_crypt"])

>>> # hash() uses the first scheme
>>> myctx.default_scheme()
'sha256_crypt'
>>> myctx.hash("password")
'5rounds=80000$R5ZIZRTNPgbdcWq5$fT/Oeqq/apMa/0fbx8YheYWS6Z3XLTxCzEtutsk2cJ1'

>>> # but setting default causes the second scheme to be used.
>>> myctx.update(default="md5_crypt")
>>> myctx.default_scheme()
'md5_crypt'
>>> myctx.hash("password")
'1Rr0C.KI8$Kvciy8pqfL9BQ2CJzEzfZ/'

See also:

the Basic Usage example in the tutorial.

deprecated List of algorithms which should be considered “deprecated”.

This has the same format as schemes, and should be a subset of those algorithms. The main purpose of
this method is to flag schemes which need to be rehashed when the user next logs in. This has no effect on
the Primary Methods; but if the special Hash Migration methods are passed a hash belonging to a deprecated
scheme, they will flag it as needed to be rehashed using the default scheme.

3.3. passlib.context - CryptContext Hash Manager 51

https://docs.python.org/3/library/exceptions.html#ValueError

Passlib Documentation, Release 1.8.0.dev0

This may also contain a single special value, ["auto"], which will configure the CryptContext instance to
deprecate all supported schemes except for the default scheme.

New in version 1.6: Added support for the ["auto"] value.

See also:

Deprecation & Hash Migration in the tutorial

truncate_error

By default, some algorithms will truncate large passwords (e.g. bcrypt truncates ones larger
than 72 bytes). Such hashes accept a truncate_error=True option to make them raise a
PasswordTruncateError instead.

This can also be set at the CryptContext level, and will passed to all hashes that support it.

New in version 1.7.

Algorithm Options

All of the other options that can be passed to a CryptContext constructor affect individual hash algorithms. All
of the following keys have the form scheme__key , where scheme is the name of one of the algorithms listed in
schemes, and option one of the parameters below:

scheme__rounds

Set the number of rounds required for this scheme when generating new hashes (using hash()). Existing
hashes which have a different number of rounds will be marked as deprecated.

This essentially sets default_rounds, min_rounds, and max_rounds all at once. If any of those
options are also specified, they will override the value specified by rounds.

New in version 1.7: Previous releases of Passlib treated this as an alias for default_rounds.

scheme__default_rounds

Sets the default number of rounds to use with this scheme when generating new hashes (using hash()).

If not set, this will fall back to the an algorithm-specific default_rounds. For hashes which do not
support a rounds parameter, this option is ignored. As an example:

>>> from passlib.context import CryptContext

>>> # no explicit default_rounds set, so hash() uses sha256_crypt's default
→˓(80000)
>>> myctx = CryptContext(["sha256_crypt"])
>>> myctx.hash("fooey")
'5rounds=80000$60Y7mpmAhUv6RDvj$AdseAOq6bKUZRDRTr/2QK1t38qm3P6sYeXhXKnBAmg0
→˓'

^^^^^

>>> # but if a default is specified, it will be used instead.
>>> myctx = CryptContext(["sha256_crypt"], sha256_crypt__default_
→˓rounds=77123)
>>> myctx.hash("fooey")
'5rounds=77123$60Y7mpmAhUv6RDvj$AdseAOq6bKUZRDRTr/2QK1t38qm3P6sYeXhXKnBAmg0
→˓'

^^^^^

52 Chapter 3. API Reference

Passlib Documentation, Release 1.8.0.dev0

See also:

the Using Default Settings example in the tutorial.

scheme__vary_rounds

Deprecated since version 1.7: This option has been deprecated as of Passlib 1.7, and will be removed in
Passlib 2.0. The (very minimal) security benefit it provides was judged to not be worth code complexity
it requires.

Instead of using a fixed rounds value (such as specified by default_rounds, above); this option will
cause each call to hash() to vary the default rounds value by some amount.

This can be an integer value, in which case each call will use a rounds value within the range
default_rounds +/- vary_rounds. It may also be a floating point value within the range
0.0 .. 1.0, in which case the range will be calculated as a proportion of the current default rounds
(default_rounds +/- default_rounds*vary_rounds). A typical setting is 0.1 to 0.2.

As an example of how this parameter operates:

>>> # without vary_rounds set, hash() uses the same amount each time:
>>> from passlib.context import CryptContext
>>> myctx = CryptContext(schemes=["sha256_crypt"],
... sha256_crypt__default_rounds=80000)
>>> myctx.hash("fooey")
'5rounds=80000$60Y7mpmAhUv6RDvj$AdseAOq6bKUZRDRTr/2QK1t38qm3P6sYeXhXKnBAmg0
→˓'
>>> myctx.hash("fooey")
'5rounds=80000$60Y7mpmAhUv6RDvj$AdseAOq6bKUZRDRTr/2QK1t38qm3P6sYeXhXKnBAmg0
→˓'

^^^^^

>>> # but if vary_rounds is set, each one will be randomized
>>> # (in this case, within the range 72000 .. 88000)
>>> myctx = CryptContext(schemes=["sha256_crypt"],
... sha256_crypt__default_rounds=80000,
... sha256_crypt__vary_rounds=0.1)
>>> myctx.hash("fooey")
'5rounds=83966$bMpgQxN2hXo2kVr4$jL4Q3ov41UPgSbO7jYL0PdtsOg5koo4mCa.UEF3zan.
→˓'
>>> myctx.hash("fooey")
'5rounds=72109$43BBHC/hYPHzL69c$VYvVIdKn3Zdnvu0oJHVlo6rr0WjiMTGmlrZrrH.GxnA
→˓'

^^^^^

Note: This is not a needed security measure, but it lets some of the less-significant digits of the rounds
value act as extra salt bits; and helps foil any attacks targeted at a specific number of rounds of a hash.

scheme__min_rounds, scheme__max_rounds

These options place a limit on the number of rounds allowed for a particular scheme.

For one, they limit what values are allowed for default_rounds, and clip the effective range of the
vary_rounds parameter. More importantly though, they proscribe a minimum strength for the hash,
and any hashes which don’t have sufficient rounds will be flagged as needing rehashing by the Hash
Migration methods.

Note: These are configurable per-context limits. A warning will be issued if they exceed any hard limits

3.3. passlib.context - CryptContext Hash Manager 53

Passlib Documentation, Release 1.8.0.dev0

set by the algorithm itself.

See also:

the Settings Rounds Limitations example in the tutorial.

scheme__other-option

Finally, any other options are assumed to correspond to one of the that algorithm’s hash() settings,
such as setting a salt_size.

See also:

the Using Default Settings example in the tutorial.

Global Algorithm Options

all__option

The special scheme all permits you to set an option, and have it act as a global default for all the algo-
rithms in the context. For instance, all__vary_rounds=0.1 would set the vary_rounds option
for all the schemes where it was not overridden with an explicit scheme__vary_rounds option.

Deprecated since version 1.7: This special scheme is deprecated as of Passlib 1.7, and will be removed in
Passlib 2.0. It’s only legitimate use was for vary_rounds, which is also being removed in Passlib 2.0.

User Categories

category__context__option, category__scheme__option

Passing keys with this format to the CryptContext constructor allows you to specify conditional con-
text and algorithm options, controlled by the category parameter supported by most CryptContext
methods.

These options are conditional because they only take effect if the category prefix of the option matches
the value of the category parameter of the CryptContext method being invoked. In that case, they
override any options specified without a category prefix (e.g. admin__sha256_crypt__min_rounds would
override sha256_crypt__min_rounds). The category prefix and the value passed into the category
parameter can be any string the application wishes to use, the only constraint is that None indicates the
default category.

Motivation: Policy limits such as default rounds values and deprecated schemes generally have to be set globally.
However, it’s frequently desirable to specify stronger options for certain accounts (such as admin accounts), choosing
to sacrifice longer hashing time for a more secure password. The user categories system allows for this. For example,
a CryptContext could be set up as follows:

>>> # A context object can be set up as follows:
>>> from passlib.context import CryptContext
>>> myctx = CryptContext(schemes=["sha256_crypt"],
... sha256_crypt__default_rounds=77000,
... staff__sha256_crypt__default_rounds=88000)

>>> # In this case, calling hash() with ``category=None`` would result
>>> # in a hash that used 77000 sha256-crypt rounds:
>>> myctx.hash("password", category=None)
'5rounds=77000$sj3XI0AbKlEydAKt$BhFvyh4.IoxaUeNlW6rvQ.O0w8BtgLQMYorkCOMzf84'

^^^^^

(continues on next page)

54 Chapter 3. API Reference

Passlib Documentation, Release 1.8.0.dev0

(continued from previous page)

>>> # But if the application passed in ``category="staff"`` when an administrative
>>> # account set their password, 88000 rounds would be used:
>>> myctx.hash("password", category="staff")
'5rounds=88000$w7XIdKfTI9.YLwmA$MIzGvs6NU1QOQuuDHhICLmDsdW/t94Bbdfxdh/6NJl7'

^^^^^

3.3.1.2 Primary Methods

The main interface to the CryptContext object deliberately mirrors the PasswordHash interface, since its central pur-
pose is to act as a container for multiple password hashes. Most applications will only need to make use two methods
in a CryptContext instance:

CryptContext.hash(secret, scheme=None, category=None, **kwds)
run secret through selected algorithm, returning resulting hash.

Parameters

• secret (str or bytes) – the password to hash.

• scheme (str or None) – Optional scheme to use. Scheme must be one of the ones con-
figured for this context (see the schemes option). If no scheme is specified, the configured
default will be used.

Deprecated since version 1.7: Support for this keyword is deprecated, and will be removed
in Passlib 2.0.

• category (str or None) – Optional user category. If specified, this will cause any
category-specific defaults to be used when hashing the password (e.g. different default
scheme, different default rounds values, etc).

• **kwds – All other keyword options are passed to the selected algorithm’s
PasswordHash.hash() method.

Returns The secret as encoded by the specified algorithm and options. The return value will always
be a str.

Raises TypeError, ValueError –

• If any of the arguments have an invalid type or value. This includes any keywords passed to
the underlying hash’s PasswordHash.hash() method.

See also:

the Basic Usage example in the tutorial

CryptContext.encrypt(*args, **kwds)
Legacy alias for hash().

Deprecated since version 1.7: This method was renamed to hash() in version 1.7. This alias will be removed
in version 2.0, and should only be used for compatibility with Passlib 1.3 - 1.6.

CryptContext.verify(secret, hash, scheme=None, category=None, **kwds)
verify secret against an existing hash.

If no scheme is specified, this will attempt to identify the scheme based on the contents of the provided hash
(limited to the schemes configured for this context). It will then check whether the password verifies against the
hash.

Parameters

3.3. passlib.context - CryptContext Hash Manager 55

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError

Passlib Documentation, Release 1.8.0.dev0

• secret (str or bytes) – the secret to verify

• hash (str or bytes) – hash string to compare to

if None is passed in, this will be treated as “never verifying”

• scheme (str) – Optionally force context to use specific scheme. This is usually not
needed, as most hashes can be unambiguously identified. Scheme must be one of the ones
configured for this context (see the schemes option).

Deprecated since version 1.7: Support for this keyword is deprecated, and will be removed
in Passlib 2.0.

• category (str or None) – Optional user category string. This is mainly used when
generating new hashes, it has little effect when verifying; this keyword is mainly provided
for symmetry.

• **kwds – All additional keywords are passed to the appropriate handler, and should match
its context_kwds.

Returns True if the password matched the hash, else False.

Raises

• ValueError –

– if the hash did not match any of the configured schemes().

– if any of the arguments have an invalid value (this includes any keywords passed to the
underlying hash’s PasswordHash.verify() method).

• TypeError –

– if any of the arguments have an invalid type (this includes any keywords passed to the
underlying hash’s PasswordHash.verify() method).

See also:

the Basic Usage example in the tutorial

CryptContext.identify(hash, category=None, resolve=False, required=False, unconfigured=False)
Attempt to identify which algorithm the hash belongs to.

Note that this will only consider the algorithms currently configured for this context (see the schemes option).
All registered algorithms will be checked, from first to last, and whichever one positively identifies the hash first
will be returned.

Parameters

• hash (str or bytes) – The hash string to test.

• category (str or None) – Optional user category. Ignored by this function, this
parameter is provided for symmetry with the other methods.

• resolve (bool) – If True, returns the hash handler itself, instead of the name of the
hash.

• required (bool) – If True, this will raise a ValueError if the hash cannot be identified,
instead of returning None.

Returns The handler which first identifies the hash, or None if none of the algorithms identify the
hash.

CryptContext.dummy_verify()
Helper that applications can call when user wasn’t found, in order to simulate time it would take to hash a
password.

56 Chapter 3. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Passlib Documentation, Release 1.8.0.dev0

Runs verify() against a dummy hash, to simulate verification of a real account password.

New in version 1.7.

“crypt”-style methods

Additionally, the main interface offers wrappers for the two Unix “crypt” style methods provided by all the
PasswordHash objects:

CryptContext.genhash(secret, config, scheme=None, category=None, **kwds)
Generate hash for the specified secret using another hash.

Deprecated since version 1.7: This method will be removed in version 2.0, and should only be used for compat-
ibility with Passlib 1.3 - 1.6.

CryptContext.genconfig(scheme=None, category=None, **settings)
Generate a config string for specified scheme.

Deprecated since version 1.7: This method will be removed in version 2.0, and should only be used for compat-
ibility with Passlib 1.3 - 1.6.

3.3.1.3 Hash Migration

Applications which want to detect and regenerate deprecated hashes will want to use one of the following methods:

CryptContext.verify_and_update(secret, hash, scheme=None, category=None, **kwds)
verify password and re-hash the password if needed, all in a single call.

This is a convenience method which takes care of all the following: first it verifies the password (verify()), if
this is successfull it checks if the hash needs updating (needs_update()), and if so, re-hashes the password
(hash()), returning the replacement hash. This series of steps is a very common task for applications which
wish to update deprecated hashes, and this call takes care of all 3 steps efficiently.

Parameters

• secret (str or bytes) – the secret to verify

• hash – hash string to compare to.

if None is passed in, this will be treated as “never verifying”

• scheme (str) – Optionally force context to use specific scheme. This is usually not
needed, as most hashes can be unambiguously identified. Scheme must be one of the ones
configured for this context (see the schemes option).

Deprecated since version 1.7: Support for this keyword is deprecated, and will be removed
in Passlib 2.0.

• category (str or None) – Optional user category. If specified, this will cause any
category-specific defaults to be used if the password has to be re-hashed.

• **kwds – all additional keywords are passed to the appropriate handler, and should match
that hash’s PasswordHash.context_kwds.

Returns

This function returns a tuple containing two elements: (verified,
replacement_hash). The first is a boolean flag indicating whether the password
verified, and the second an optional replacement hash. The tuple will always match one of the
following 3 cases:

3.3. passlib.context - CryptContext Hash Manager 57

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Passlib Documentation, Release 1.8.0.dev0

• (False, None) indicates the secret failed to verify.

• (True, None) indicates the secret verified correctly, and the hash does not need updat-
ing.

• (True, str) indicates the secret verified correctly, but the current hash needs to be up-
dated. The str will be the freshly generated hash, to replace the old one.

Raises TypeError, ValueError – For the same reasons as verify().

See also:

the Deprecation & Hash Migration example in the tutorial.

CryptContext.needs_update(hash, scheme=None, category=None, secret=None)
Check if hash needs to be replaced for some reason, in which case the secret should be re-hashed.

This function is the core of CryptContext’s support for hash migration: This function takes in a hash string, and
checks the scheme, number of rounds, and other properties against the current policy. It returns True if the
hash is using a deprecated scheme, or is otherwise outside of the bounds specified by the policy (e.g. the number
of rounds is lower than min_rounds configuration for that algorithm). If so, the password should be re-hashed
using hash() Otherwise, it will return False.

Parameters

• hash (str or bytes) – The hash string to examine.

• scheme (str or None) – Optional scheme to use. Scheme must be one of the ones
configured for this context (see the schemes option). If no scheme is specified, it will be
identified based on the value of hash.

Deprecated since version 1.7: Support for this keyword is deprecated, and will be removed
in Passlib 2.0.

• category (str or None) – Optional user category. If specified, this will cause any
category-specific defaults to be used when determining if the hash needs to be updated (e.g.
is below the minimum rounds).

• secret (str, bytes, or None) – Optional secret associated with the provided
hash. This is not required, or even currently used for anything. . . it’s for forward-
compatibility with any future update checks that might need this information. If provided,
Passlib assumes the secret has already been verified successfully against the hash.

New in version 1.6.

Returns True if hash should be replaced, otherwise False.

Raises ValueError – If the hash did not match any of the configured schemes().

New in version 1.6: This method was previously named hash_needs_update().

See also:

the Deprecation & Hash Migration example in the tutorial.

CryptContext.hash_needs_update(hash, scheme=None, category=None)
Legacy alias for needs_update().

Deprecated since version 1.6: This method was renamed to needs_update() in version 1.6. This alias will
be removed in version 2.0, and should only be used for compatibility with Passlib 1.3 - 1.5.

58 Chapter 3. API Reference

https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#ValueError

Passlib Documentation, Release 1.8.0.dev0

3.3.1.4 Disabled Hash Managment

New in version 1.7.

It’s frequently useful to disable a user’s ability to login by replacing their password hash with a standin that’s guar-
anteed to never verify, against any password. CryptContext offers some convenience methods for this through the
following API.

CryptContext.disable(hash=None)
return a string to disable logins for user, usually by returning a non-verifying string such as "!".

Parameters hash – Callers can optionally provide the account’s existing hash. Some disabled
handlers (such as unix_disabled) will encode this into the returned value, so that it can be
recovered via enable().

Raises RuntimeError – if this function is called w/o a disabled hasher (such as
unix_disabled) included in the list of schemes.

Returns hash string which will be recognized as valid by the context, but is guaranteed to not vali-
date against any password.

CryptContext.enable(hash)
inverse of disable() – attempts to recover original hash which was converted by a disable() call into a
disabled hash – thus restoring the user’s original password.

Raises ValueError – if original hash not present, or if the disabled handler doesn’t support en-
coding the original hash (e.g. django_disabled)

Returns the original hash.

CryptContext.is_enabled(hash)
test if hash represents a usuable password – i.e. does not represent an unusuable password such as "!", which
is recognized by the unix_disabled hash.

Raises ValueError – if the hash is not recognized (typically solved by adding unix_disabled
to the list of schemes).

3.3.1.5 Alternate Constructors

In addition to the main class constructor, which accepts a configuration as a set of keywords, there are the following
alternate constructors:

classmethod CryptContext.from_string(source, section=’passlib’, encoding=’utf-8’)
create new CryptContext instance from an INI-formatted string.

Parameters

• source (str or bytes) – string containing INI-formatted content.

• section (str) – option name of section to read from, defaults to "passlib".

• encoding (str) – optional encoding used when source is bytes, defaults to "utf-8".

Returns new CryptContext instance, configured based on the parameters in the source string.

Usage example:

>>> from passlib.context import CryptContext
>>> context = CryptContext.from_string('''
... [passlib]
... schemes = sha256_crypt, des_crypt

(continues on next page)

3.3. passlib.context - CryptContext Hash Manager 59

https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Passlib Documentation, Release 1.8.0.dev0

(continued from previous page)

... sha256_crypt__default_rounds = 30000

... ''')

New in version 1.6.

See also:

to_string(), the inverse of this constructor.

classmethod CryptContext.from_path(path, section=’passlib’, encoding=’utf-8’)
create new CryptContext instance from an INI-formatted file.

this functions exactly the same as from_string(), except that it loads from a local file.

Parameters

• path (str) – path to local file containing INI-formatted config.

• section (str) – option name of section to read from, defaults to "passlib".

• encoding (str) – encoding used to load file, defaults to "utf-8".

Returns new CryptContext instance, configured based on the parameters stored in the file path.

New in version 1.6.

See also:

from_string() for an equivalent usage example.

CryptContext.copy(**kwds)
Return copy of existing CryptContext instance.

This function returns a new CryptContext instance whose configuration is exactly the same as the original, with
the exception that any keywords passed in will take precedence over the original settings. As an example:

>>> from passlib.context import CryptContext

>>> # given an existing context...
>>> ctx1 = CryptContext(["sha256_crypt", "md5_crypt"])

>>> # copy can be used to make a clone, and update
>>> # some of the settings at the same time...
>>> ctx2 = custom_app_context.copy(default="md5_crypt")

>>> # and the original will be unaffected by the change
>>> ctx1.default_scheme()
"sha256_crypt"
>>> ctx2.default_scheme()
"md5_crypt"

New in version 1.6: This method was previously named replace(). That alias was removed in Passlib 1.8.

See also:

update()

3.3.1.6 Changing the Configuration

CryptContext objects can have their configuration replaced or updated on the fly, and from a variety of sources
(keywords, strings, files). This is done through three methods:

60 Chapter 3. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Passlib Documentation, Release 1.8.0.dev0

CryptContext.update(**kwds)
Helper for quickly changing configuration.

This acts much like the dict.update() method: it updates the context’s configuration, replacing the original
value(s) for the specified keys, and preserving the rest. It accepts any keyword accepted by the CryptContext
constructor.

New in version 1.6.

See also:

copy()

CryptContext.load(source, update=False, section=’passlib’, encoding=’utf-8’)
Load new configuration into CryptContext, replacing existing config.

Parameters

• source – source of new configuration to load. this value can be a number of different
types:

– a dict object, or compatible Mapping

the key/value pairs will be interpreted the same keywords for the CryptContext
class constructor.

– a str or bytes string

this will be interpreted as an INI-formatted file, and appropriate key/value pairs will
be loaded from the specified section.

– another CryptContext object.

this will export a snapshot of its configuration using to_dict().

• update (bool) – By default, load() will replace the existing configuration entirely. If
update=True, it will preserve any existing configuration options that are not overridden
by the new source, much like the update() method.

• section (str) – When parsing an INI-formatted string, load() will look for a section
named "passlib". This option allows an alternate section name to be used. Ignored
when loading from a dictionary.

• encoding (str) – Encoding to use when source is bytes. Defaults to "utf-8". Ignored
when loading from a dictionary.

Deprecated since version 1.8: This keyword, and support for bytes input, will be dropped in
Passlib 2.0

Raises

• TypeError –

– If the source cannot be identified.

– If an unknown / malformed keyword is encountered.

• ValueError – If an invalid keyword value is encountered.

Note: If an error occurs during a load() call, the CryptContext instance will be restored to the configu-
ration it was in before the load() call was made; this is to ensure it is never left in an inconsistent state due to
a load error.

New in version 1.6.

3.3. passlib.context - CryptContext Hash Manager 61

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError

Passlib Documentation, Release 1.8.0.dev0

CryptContext.load_path(path, update=False, section=’passlib’, encoding=’utf-8’)
Load new configuration into CryptContext from a local file.

This function is a wrapper for load() which loads a configuration string from the local file path, instead
of an in-memory source. Its behavior and options are otherwise identical to load() when provided with an
INI-formatted string.

New in version 1.6.

3.3.1.7 Examining the Configuration

The CryptContext object also supports basic inspection of its current configuration:

CryptContext.schemes(resolve=False, category=None, unconfigured=False)
return schemes loaded into this CryptContext instance.

Parameters resolve (bool) – if True, will return a tuple of PasswordHash objects instead
of their names.

Returns returns tuple of the schemes configured for this context via the schemes option.

New in version 1.6: This was previously available as CryptContext().policy.schemes()

See also:

the schemes option for usage example.

CryptContext.default_scheme(category=None, resolve=False, unconfigured=False)
return name of scheme that hash() will use by default.

Parameters

• resolve (bool) – if True, will return a PasswordHash object instead of the name.

• category (str or None) – Optional user category. If specified, this will return the
catgory-specific default scheme instead.

Returns name of the default scheme.

See also:

the default option for usage example.

New in version 1.6.

Changed in version 1.7: This now returns a hasher configured with any CryptContext-specific options (custom
rounds settings, etc). Previously this returned the base hasher from passlib.hash.

CryptContext.handler(scheme=None, category=None, unconfigured=False)
helper to resolve name of scheme -> PasswordHash object used by scheme.

Parameters

• scheme – This should identify the scheme to lookup. If omitted or set to None, this will
return the handler for the default scheme.

• category – If a user category is specified, and no scheme is provided, it will use the
default for that category. Otherwise this parameter is ignored.

• unconfigured – By default, this returns a handler object whose .hash() and
.needs_update() methods will honor the configured provided by CryptContext. See
unconfigured=True to get the underlying handler from before any context-specific
configuration was applied.

Raises KeyError – If the scheme does not exist OR is not being used within this context.

62 Chapter 3. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#KeyError

Passlib Documentation, Release 1.8.0.dev0

Returns PasswordHash object used to implement the named scheme within this context (this will
usually be one of the objects from passlib.hash)

New in version 1.6: This was previously available as CryptContext().policy.get_handler()

Changed in version 1.7: This now returns a hasher configured with any CryptContext-specific options (custom
rounds settings, etc). Previously this returned the base hasher from passlib.hash.

CryptContext.context_kwds
return set containing union of all contextual keywords supported by the handlers in this context.

New in version 1.6.6.

3.3.1.8 Saving the Configuration

More detailed inspection can be done by exporting the configuration using one of the serialization methods:

CryptContext.to_dict(resolve=False)
Return current configuration as a dictionary.

Parameters resolve (bool) – if True, the schemes key will contain a list of a
PasswordHash objects instead of just their names.

This method dumps the current configuration of the CryptContext instance. The key/value pairs should
be in the format accepted by the CryptContext class constructor, in fact CryptContext(**myctx.
to_dict()) will create an exact copy of myctx. As an example:

>>> # you can dump the configuration of any crypt context...
>>> from passlib.apps import ldap_nocrypt_context
>>> ldap_nocrypt_context.to_dict()
{'schemes': ['ldap_salted_sha1',
'ldap_salted_md5',
'ldap_sha1',
'ldap_md5',
'ldap_plaintext']}

New in version 1.6: This was previously available as CryptContext().policy.to_dict()

See also:

the Loading & Saving a CryptContext example in the tutorial.

CryptContext.to_string(section=’passlib’)
serialize to INI format and return as unicode string.

Parameters section – name of INI section to output, defaults to "passlib".

Returns CryptContext configuration, serialized to a INI unicode string.

This function acts exactly like to_dict(), except that it serializes all the contents into a single human-
readable string, which can be hand edited, and/or stored in a file. The output of this method is accepted by
from_string(), from_path(), and load(). As an example:

>>> # you can dump the configuration of any crypt context...
>>> from passlib.apps import ldap_nocrypt_context
>>> print ldap_nocrypt_context.to_string()
[passlib]
schemes = ldap_salted_sha1, ldap_salted_md5, ldap_sha1, ldap_md5, ldap_plaintext

New in version 1.6: This was previously available as CryptContext().policy.to_string()

See also:

3.3. passlib.context - CryptContext Hash Manager 63

https://docs.python.org/3/library/functions.html#bool

Passlib Documentation, Release 1.8.0.dev0

the Loading & Saving a CryptContext example in the tutorial.

3.3.1.9 Configuration Errors

The following errors may be raised when creating a CryptContext instance via any of its constructors, or when
updating the configuration of an existing instance:

raises ValueError

• If a configuration option contains an invalid value (e.g. all__vary_rounds=-1).

• If the configuration contains valid but incompatible options (e.g. listing a scheme as both default
and deprecated).

raises KeyError

• If the configuration contains an unknown or forbidden option (e.g. scheme__salt).

• If the schemes, default, or deprecated options reference an unknown hash scheme (e.g.
schemes=['xxx'])

raises TypeError

• If a configuration value has the wrong type (e.g. schemes=123).

Note that this error shouldn’t occur when loading configurations from a file/string (e.g. using
CryptContext.from_string()).

Additionally, a PasslibConfigWarning may be issued if any invalid-but-correctable values are encountered (e.g.
if sha256_crypt__min_rounds is set to less than sha256_crypt ‘s minimum of 1000).

Changed in version 1.6: Previous releases used Python’s builtin UserWarning instead of the more specific
passlib.exc.PasslibConfigWarning.

3.3.2 Other Helpers

class passlib.context.LazyCryptContext([schemes=None], **kwds[, onload=None])
CryptContext subclass which doesn’t load handlers until needed.

This is a subclass of CryptContext which takes in a set of arguments exactly like CryptContext, but won’t import
any handlers (or even parse its arguments) until the first time one of its methods is accessed.

Parameters

• schemes – The first positional argument can be a list of schemes, or omitted, just like
CryptContext.

• onload – If a callable is passed in via this keyword, it will be invoked at lazy-load time with
the following signature: onload(**kwds) -> kwds; where kwds is all the additional
kwds passed to LazyCryptContext. It should perform any additional deferred initialization,
and return the final dict of options to be passed to CryptContext.

New in version 1.6.

• kwds – All additional keywords are passed to CryptContext; or to the onload function (if
provided).

This is mainly used internally by modules such as passlib.apps, which define a large number of contexts,
but only a few of them will be needed at any one time. Use of this class saves the memory needed to import
the specified handlers until the context instance is actually accessed. As well, it allows constructing a context at
module-init time, but using onload() to provide dynamic configuration at application-run time.

64 Chapter 3. API Reference

https://docs.python.org/3/library/exceptions.html#UserWarning

Passlib Documentation, Release 1.8.0.dev0

Note: This class is only useful if you’re referencing handler objects by name, and don’t want them imported
until runtime. If you want to have the config validated before your application runs, or are passing in already-
imported handler instances, you should use CryptContext instead.

New in version 1.4.

3.4 passlib.crypto - Cryptographic Helper Functions

This module is primarily used as an internal support module. It contains cryptography utility functions used by Passlib.
However, end-user applications may find some of the functions useful.

It contains the following submodules:

3.4.1 passlib.crypto.digest - Hash & Related Helpers

New in version 1.7.

This module provides various cryptographic support functions used by Passlib to implement the various password
hashes it provides, as well as paper over some VM & version incompatibilities.

3.4.1.1 Hash Functions

passlib.crypto.digest.norm_hash_name(name, format=’hashlib’)
Normalize hash function name (convenience wrapper for lookup_hash()).

Parameters

• name – Original hash function name.

This name can be a Python hashlib digest name, a SCRAM mechanism name, IANA
assigned hash name, etc. Case is ignored, and underscores are converted to hyphens.

• format – Naming convention to normalize to. Possible values are:

– "hashlib" (the default) - normalizes name to be compatible with Python’s hashlib.

– "iana" - normalizes name to IANA-assigned hash function name. For hashes which
IANA hasn’t assigned a name for, this issues a warning, and then uses a heuristic to
return a “best guess” name.

Returns Hash name, returned as native str.

passlib.crypto.digest.lookup_hash(digest, return_unknown=False, required=True)
Returns a HashInfo record containing information about a given hash function. Can be used to look up a hash
constructor by name, normalize hash name representation, etc.

Parameters

• digest – This can be any of:

– A string containing a hashlib digest name (e.g. "sha256"),

– A string containing an IANA-assigned hash name,

– A digest constructor function (e.g. hashlib.sha256).

Case is ignored, underscores are converted to hyphens, and various other cleanups are made.

3.4. passlib.crypto - Cryptographic Helper Functions 65

https://docs.python.org/3/library/hashlib.html#module-hashlib

Passlib Documentation, Release 1.8.0.dev0

• required – By default (True), this function will throw an UnknownHashError if no
hash constructor can be found, or if the hash is not actually available.

If this flag is False, it will instead return a dummy HashInfo record which will de-
fer throwing the error until it’s constructor function is called. This is mainly used by
norm_hash_name().

• return_unknown – Deprecated since version 1.7.3: deprecated, and will be removed in
passlib 2.0. this acts like inverse of required.

Returns HashInfo HashInfo instance containing information about specified digest.

Multiple calls resolving to the same hash should always return the same HashInfo instance.

Note: lookup_hash() supports all hashes available directly in hashlib, as well as offered through hashlib.
new(). It will also fallback to passlib’s builtin MD4 implementation if one is not natively available.

class passlib.crypto.digest.HashInfo
Record containing information about a given hash algorithm, as returned lookup_hash().

This class exposes the following attributes:

const = None
Hash constructor function (e.g. hashlib.sha256())

digest_size = None
Hash’s digest size

block_size = None
Hash’s block size

name = None
Canonical / hashlib-compatible name (e.g. "sha256").

iana_name = None
IANA assigned name (e.g. "sha-256"), may be None if unknown.

aliases = ()
Tuple of other known aliases (may be empty)

supported
whether hash is available for use (if False, constructor will throw UnknownHashError if called)

This object can also be treated a 3-element sequence containing (const, digest_size,
block_size).

3.4.1.2 PKCS#5 Key Derivation Functions

passlib.crypto.digest.pbkdf1(digest, secret, salt, rounds, keylen=None)
pkcs#5 password-based key derivation v1.5

Parameters

• digest – digest name or constructor.

• secret – secret to use when generating the key. may be bytes or str (encoded using
UTF-8).

• salt – salt string to use when generating key. may be bytes or str (encoded using
UTF-8).

66 Chapter 3. API Reference

https://docs.python.org/3/library/hashlib.html#module-hashlib
https://docs.python.org/3/library/hashlib.html#hashlib.new
https://docs.python.org/3/library/hashlib.html#hashlib.new
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Passlib Documentation, Release 1.8.0.dev0

• rounds – number of rounds to use to generate key.

• keylen – number of bytes to generate (if omitted / None, uses digest’s native size)

Returns raw bytes of generated key

Note: This algorithm has been deprecated, new code should use PBKDF2. Among other limitations, keylen
cannot be larger than the digest size of the specified hash.

passlib.crypto.digest.pbkdf2_hmac(digest, secret, salt, rounds, keylen=None)
pkcs#5 password-based key derivation v2.0 using HMAC + arbitrary digest.

Parameters

• digest – digest name or constructor.

• secret – passphrase to use to generate key. may be bytes or str (encoded using UTF-
8).

• salt – salt string to use when generating key. may be bytes or str (encoded using
UTF-8).

• rounds – number of rounds to use to generate key.

• keylen – number of bytes to generate. if omitted / None, will use digest’s native output
size.

Returns raw bytes of generated key

Changed in version 1.7: This function will use the first available of the following backends:

• fastpbk2

• hashlib.pbkdf2_hmac() (only available in py2 >= 2.7.8, and py3 >= 3.4)

• builtin pure-python backend

See passlib.crypto.digest.PBKDF2_BACKENDS to determine which backend(s) are in use.

passlib.crypto.digest.PBKDF2_BACKENDS
List of the pbkdf2 backends in use (listed in order of priority).

New in version 1.7.

Note: The details of PBKDF1 and PBKDF2 are specified in RFC 2898.

3.4.2 passlib.crypto.des - DES routines

Changed in version 1.7: This module was relocated from passlib.utils.des; the old location will be removed
in Passlib 2.0.

Warning: NIST has declared DES to be “inadequate” for cryptographic purposes. These routines, and the
password hashes based on them, should not be used in new applications.

This module contains routines for encrypting blocks of data using the DES algorithm. Note that these functions do not
support multi-block operation or decryption, since they are designed primarily for use in password hash algorithms
(such as des_crypt and bsdi_crypt).

3.4. passlib.crypto - Cryptographic Helper Functions 67

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://pypi.python.org/pypi/fastpbkdf2
https://docs.python.org/3/library/hashlib.html#hashlib.pbkdf2_hmac
https://tools.ietf.org/html/rfc2898.html

Passlib Documentation, Release 1.8.0.dev0

passlib.crypto.des.expand_des_key(key)
convert DES from 7 bytes to 8 bytes (by inserting empty parity bits)

passlib.crypto.des.des_encrypt_block(key, input, salt=0, rounds=1)
encrypt single block of data using DES, operates on 8-byte strings.

Parameters

• key – DES key as 7 byte string, or 8 byte string with parity bits (parity bit values are
ignored).

• input – plaintext block to encrypt, as 8 byte string.

• salt – Optional 24-bit integer used to mutate the base DES algorithm in a manner specific
to des_crypt and its variants. The default value 0 provides the normal (unsalted) DES
behavior. The salt functions as follows: if the i’th bit of salt is set, bits i and i+24 are
swapped in the DES E-box output.

• rounds – Optional number of rounds of to apply the DES key schedule. the default
(rounds=1) provides the normal DES behavior, but des_crypt and its variants use al-
ternate rounds values.

Raises

• TypeError – if any of the provided args are of the wrong type.

• ValueError – if any of the input blocks are the wrong size, or the salt/rounds values are
out of range.

Returns resulting 8-byte ciphertext block.

passlib.crypto.des.des_encrypt_int_block(key, input, salt=0, rounds=1)
encrypt single block of data using DES, operates on 64-bit integers.

this function is essentially the same as des_encrypt_block(), except that it operates on integers, and will
NOT automatically expand 56-bit keys if provided (since there’s no way to detect them).

Parameters

• key – DES key as 64-bit integer (the parity bits are ignored).

• input – input block as 64-bit integer

• salt – optional 24-bit integer used to mutate the base DES algorithm. defaults to 0 (no
mutation applied).

• rounds – optional number of rounds of to apply the DES key schedule. defaults to 1.

Raises

• TypeError – if any of the provided args are of the wrong type.

• ValueError – if any of the input blocks are the wrong size, or the salt/rounds values are
out of range.

Returns resulting ciphertext as 64-bit integer.

3.5 passlib.exc - Exceptions and warnings

This module contains all the custom exceptions & warnings that may be raised by Passlib.

68 Chapter 3. API Reference

https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError

Passlib Documentation, Release 1.8.0.dev0

3.5.1 Exceptions

exception passlib.exc.MissingBackendError
Error raised if multi-backend handler has no available backends; or if specifically requested backend is not
available.

MissingBackendError derives from RuntimeError, since it usually indicates lack of an external library
or OS feature. This is primarily raised by handlers which depend on external libraries (which is currently just
bcrypt).

exception passlib.exc.InternalBackendError
Error raised if something unrecoverable goes wrong with backend call; such as if crypt.crypt() returning
a malformed hash.

New in version 1.7.3.

exception passlib.exc.PasswordValueError
Error raised if a password can’t be hashed / verified for various reasons. This exception derives from the builtin
ValueError.

May be thrown directly when password violates internal invariants of hasher (e.g. some don’t support NULL
characters). Hashers may also throw more specific subclasses, such as PasswordSizeError.

New in version 1.7.3.

exception passlib.exc.PasswordSizeError(max_size, msg=None)
Error raised if a password exceeds the maximum size allowed by Passlib (by default, 4096 characters); or if
password exceeds a hash-specific size limitation.

This exception derives from PasswordValueError (above).

Many password hash algorithms take proportionately larger amounts of time and/or memory depending on
the size of the password provided. This could present a potential denial of service (DOS) situation if a mali-
ciously large password is provided to an application. Because of this, Passlib enforces a maximum size limit,
but one which should be much larger than any legitimate password. PasswordSizeError derives from
ValueError.

Note: Applications wishing to use a different limit should set the PASSLIB_MAX_PASSWORD_SIZE envi-
ronmental variable before Passlib is loaded. The value can be any large positive integer.

max_size
indicates the maximum allowed size.

New in version 1.6.

exception passlib.exc.PasswordTruncateError(cls, msg=None)
Error raised if password would be truncated by hash. This derives from PasswordSizeError (above).

Hashers such as bcrypt can be configured to raises this error by setting truncate_error=True.

max_size
indicates the maximum allowed size.

New in version 1.7.

exception passlib.exc.PasslibSecurityError
Error raised if critical security issue is detected (e.g. an attempt is made to use a vulnerable version of a bcrypt
backend).

New in version 1.6.3.

3.5. passlib.exc - Exceptions and warnings 69

https://docs.python.org/3/library/exceptions.html#RuntimeError

Passlib Documentation, Release 1.8.0.dev0

exception passlib.exc.UnknownHashError(message=None, value=None)
Error raised by lookup_hash if hash name is not recognized. This exception derives from ValueError.

As of version 1.7.3, this may also be raised if hash algorithm is known, but has been disabled due to FIPS mode
(message will include phrase “disabled for fips”).

As of version 1.7.4, this may be raised if a CryptContext is unable to identify the algorithm used by a
password hash.

New in version 1.7.

Changed in version 1.7.4: altered call signature.

3.5.1.1 TOTP Exceptions

exception passlib.exc.TokenError(msg=None, *args, **kwds)
Base error raised by v:mod:passlib.totp when a token can’t be parsed / isn’t valid / etc. Derives from
ValueError.

Usually one of the more specific subclasses below will be raised:

• MalformedTokenError – invalid chars, too few digits

• InvalidTokenError – no match found

• UsedTokenError – match found, but token already used

New in version 1.7.

exception passlib.exc.MalformedTokenError(msg=None, *args, **kwds)
Error raised by passlib.totp when a token isn’t formatted correctly (contains invalid characters, wrong
number of digits, etc)

exception passlib.exc.InvalidTokenError(msg=None, *args, **kwds)
Error raised by passlib.totp when a token is formatted correctly, but doesn’t match any tokens within valid
range.

exception passlib.exc.UsedTokenError(*args, **kwds)
Error raised by passlib.totp if a token is reused. Derives from TokenError.

expire_time = None
optional value indicating when current counter period will end, and a new token can be generated.

New in version 1.7.

3.5.2 Warnings

exception passlib.exc.PasslibWarning
base class for Passlib’s user warnings, derives from the builtin UserWarning.

New in version 1.6.

3.5.2.1 Minor Warnings

exception passlib.exc.PasslibConfigWarning
Warning issued when non-fatal issue is found related to the configuration of a CryptContext instance.

This occurs primarily in one of two cases:

70 Chapter 3. API Reference

https://docs.python.org/3/library/exceptions.html#UserWarning

Passlib Documentation, Release 1.8.0.dev0

• The CryptContext contains rounds limits which exceed the hard limits imposed by the underlying algo-
rithm.

• An explicit rounds value was provided which exceeds the limits imposed by the CryptContext.

In both of these cases, the code will perform correctly & securely; but the warning is issued as a sign the
configuration may need updating.

New in version 1.6.

exception passlib.exc.PasslibHashWarning
Warning issued when non-fatal issue is found with parameters or hash string passed to a passlib hash class.

This occurs primarily in one of two cases:

• A rounds value or other setting was explicitly provided which exceeded the handler’s limits (and has been
clamped by the relaxed flag).

• A malformed hash string was encountered which (while parsable) should be re-encoded.

New in version 1.6.

3.5.2.2 Critical Warnings

exception passlib.exc.PasslibRuntimeWarning
Warning issued when something unexpected happens during runtime.

The fact that it’s a warning instead of an error means Passlib was able to correct for the issue, but that it’s
anomalous enough that the developers would love to hear under what conditions it occurred.

New in version 1.6.

exception passlib.exc.PasslibSecurityWarning
Special warning issued when Passlib encounters something that might affect security.

New in version 1.6.

3.6 passlib.ext.django - Django Password Hashing Plugin

Warning: This extension is a high maintenance, with an uncertain number of users. The current plan is to split this
out as a separate package concurrent with Passlib 1.8, and then judge whether it should continue to be maintained
in it’s own right. See issue 81.

This module contains a Django plugin which overrides all of Django’s password hashing functions, replacing them
with wrappers around a Passlib CryptContext object whose configuration is controlled from Django’s settings.
While this extension’s utility is diminished with the advent of Django 1.4’s hashers framework, this plugin still has a
number of uses:

• Make use of the new Django 1.4 pbkdf2 & bcrypt formats, even under earlier Django releases.

• Allow your application to work with any password hash format supported by Passlib, allowing you to import
existing hashes from other systems. Common examples include SHA512-Crypt, PHPass, and BCrypt.

• Set different iterations / cost settings based on the type of user account, and automatically update hashes that
use weaker settings when the user logs in.

• Mark any hash algorithms as deprecated, and automatically migrate to stronger hashes when the user logs in.

3.6. passlib.ext.django - Django Password Hashing Plugin 71

https://foss.heptapod.net/python-libs/passlib/issues/81
http://www.djangoproject.com

Passlib Documentation, Release 1.8.0.dev0

Note: This plugin should be considered “release candidate” quality. It works, and has good unittest coverage, but has
seen only limited real-world use. Please report any issues. It has been tested with Django 1.8 - 3.1.

New in version 1.6.

Changed in version 1.7: Support for Django 1.0 - 1.7 was dropped; now requires Django 1.8 or newer.

Warning: As of Passlib 1.8, this module will require Django 2.2 or newer.

3.6.1 Installation

Installation is simple: once Passlib itself has been installed, just add "passlib.ext.django" to Django’s
settings.INSTALLED_APPS, as soon as possible after django.contrib.auth.

Once installed, this plugin will automatically monkeypatch Django to use a Passlib CryptContext instance in
place of the normal Django password authentication routines (as an unfortunate side effect, this disables Django 1.4’s
hashers framework entirely, though the default configuration supports all the built-in Django 1.4 hashers).

3.6.2 Configuration

While this plugin will function perfectly well without setting any configuration options, you can customize it using
the following options in Django’s settings.py:

PASSLIB_CONFIG

This option specifies the CryptContext configuration options that will be used when the plugin is loaded.

• Its value will usually be an INI-formatted string or a dictionary, containing options to be passed to
CryptContext.

• Alternately, it can be the name of any preset supported by get_preset_config(), such as
"passlib-default" or "django-default".

• Finally, it can be the special string "disabled", which will disable this plugin.

At any point after this plugin has been loaded, you can serialize its current configuration to a string:

>>> from passlib.ext.django.models import password_context
>>> print password_context.to_string()

This string can then be modified, and used as the new value of PASSLIB_CONFIG.

Note: It is strongly recommended to use a configuration which will support the existing Django hashes.
Dumping and then modifying one of the preset strings is a good starting point.

PASSLIB_GET_CATEGORY

By default, Passlib will assign users to one of three categories: "superuser", "staff",
or None; based on the attributes of the User object. This allows PASSLIB_CONFIG to have
per-category policies, such as a larger number of iterations for the superuser account.

This option allows overriding the function which performs this mapping, so that more fine-
grained / alternate user categories can be used. If specified, the function should have the call
syntax get_category(user) -> category_string|None.

72 Chapter 3. API Reference

Passlib Documentation, Release 1.8.0.dev0

See also:

See User Categories for more details.

PASSLIB_CONTEXT

Deprecated since version 1.6: This is a deprecated alias for PASSLIB_CONFIG, used by the (undocu-
mented) version of this plugin that was released with Passlib 1.5. It should not be used by new applica-
tions.

3.6.3 Module Contents

passlib.ext.django.models.password_context
The CryptContext instance that drives this plugin. It can be imported and examined to inspect the current
configuration, changes made to it will immediately alter how Django hashes passwords.

(Do not replace the reference with another CryptContext, it will break things; just update the context in-place).

passlib.ext.django.models.context_changed()
If the context is modified after loading, call this function to clear internal caches.

passlib.ext.django.utils.get_preset_config(name)
Returns configuration string for one of the preset strings supported by the PASSLIB_CONFIG setting. Cur-
rently supported presets:

• "passlib-default" - default config used by this release of passlib.

• "django-default" - config matching currently installed django version.

• "django-latest" - config matching newest django version (currently same as "django-1.6").

• "django-1.0" - config used by stock Django 1.0 - 1.3 installs

• "django-1.4" - config used by stock Django 1.4 installs

• "django-1.6" - config used by stock Django 1.6 installs

passlib.ext.django.utils.PASSLIB_DEFAULT
This constant contains the default configuration for PASSLIB_CONFIG. It provides the following features:

• uses django_pbkdf2_sha256 as the default algorithm.

• supports all of the Django 1.0-1.4 hash formats.

• additionally supports SHA512-Crypt, BCrypt, and PHPass.

• is configured to use a larger number of rounds for the superuser account.

• is configured to automatically migrate all Django 1.0 hashes to use the default hash as soon as each user
logs in.

As of Passlib 1.6, it contains the following string:

[passlib]

; list of schemes supported by configuration
; currently all django 1.4 hashes, django 1.0 hashes,
; and three common modular crypt format hashes.
schemes =

django_pbkdf2_sha256, django_pbkdf2_sha1, django_bcrypt,
django_salted_sha1, django_salted_md5, django_des_crypt, hex_md5,
sha512_crypt, bcrypt, phpass

(continues on next page)

3.6. passlib.ext.django - Django Password Hashing Plugin 73

Passlib Documentation, Release 1.8.0.dev0

(continued from previous page)

; default scheme to use for new hashes
default = django_pbkdf2_sha256

; hashes using these schemes will automatically be re-hashed
; when the user logs in (currently all django 1.0 hashes)
deprecated =

django_pbkdf2_sha1, django_salted_sha1, django_salted_md5,
django_des_crypt, hex_md5

; sets some common options, including minimum rounds for two primary hashes.
; if a hash has less than this number of rounds, it will be re-hashed.
all__vary_rounds = 0.05
sha512_crypt__min_rounds = 80000
django_pbkdf2_sha256__min_rounds = 10000

; set somewhat stronger iteration counts for ``User.is_staff``
staff__sha512_crypt__default_rounds = 100000
staff__django_pbkdf2_sha256__default_rounds = 12500

; and even stronger ones for ``User.is_superuser``
superuser__sha512_crypt__default_rounds = 120000
superuser__django_pbkdf2_sha256__default_rounds = 15000

3.7 passlib.hash - Password Hashing Schemes

3.7.1 Overview

The passlib.hash module contains all the password hash algorithms built into Passlib. While each hash has
its own options and output format, they all inherit from the PasswordHash base interface. The following pages
describe each hash in detail, including its format, underlying algorithm, and known security issues.

Danger: Many of the hash algorithms listed below are *NOT* secure.

Passlib supports a wide array of hash algorithms, primarily to support legacy data and systems. If you want to
choose a secure algorithm for a new application, see the Quickstart Guide.

See also:

PasswordHash Tutorial – for general usage examples

3.7.2 Unix Hashes

Aside from “archaic” schemes such as des_crypt, most of the password hashes supported by modern Unix flavors
adhere to the modular crypt format, allowing them to be easily distinguished when used within the same file. Variants
of this format’s basic $scheme$salt$digest structure have also been adopted for use by other applications and
password hash schemes.

74 Chapter 3. API Reference

Passlib Documentation, Release 1.8.0.dev0

3.7.2.1 Active Unix Hashes

All the following schemes are actively in use by various Unix flavors to store user passwords They all follow the
modular crypt format.

passlib.hash.bcrypt - BCrypt

BCrypt was developed to replace md5_crypt for BSD systems. It uses a modified version of the Blowfish stream
cipher. Featuring a large salt and variable number of rounds, it’s currently the default password hash for many systems
(notably BSD), and has no known weaknesses. It is one of the four hashes Passlib recommends for new applications.
This class can be used directly as follows:

>>> from passlib.hash import bcrypt

>>> # generate new salt, hash password
>>> h = bcrypt.hash("password")
>>> h
'$2a$12$NT0I31Sa7ihGEWpka9ASYrEFkhuTNeBQ2xfZskIiiJeyFXhRgS.Sy'

>>> # the same, but with an explicit number of rounds
>>> bcrypt.using(rounds=13).hash("password")
'$2b$13$HMQTprwhaUwmir.g.ZYoXuRJhtsbra4uj.qJPHrKsX5nGlhpts0jm'

>>> # verify password
>>> bcrypt.verify("password", h)
True
>>> bcrypt.verify("wrong", h)
False

Note: It is strongly recommended that you install bcrypt when using this hash.

See also:

the generic PasswordHash usage examples

Interface

class passlib.hash.bcrypt
This class implements the BCrypt password hash, and follows the PasswordHash API.

It supports a fixed-length salt, and a variable number of rounds.

The using() method accepts the following optional keywords:

Parameters

• salt (str) – Optional salt string. If not specified, one will be autogenerated (this is
recommended). If specified, it must be 22 characters, drawn from the regexp range [./
0-9A-Za-z].

• rounds (int) – Optional number of rounds to use. Defaults to 12, must be between 4
and 31, inclusive. This value is logarithmic, the actual number of iterations used will be
2**rounds – increasing the rounds by +1 will double the amount of time taken.

3.7. passlib.hash - Password Hashing Schemes 75

https://pypi.python.org/pypi/bcrypt
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Passlib Documentation, Release 1.8.0.dev0

• ident (str) – Specifies which version of the BCrypt algorithm will be used when creating
a new hash. Typically this option is not needed, as the default ("2b") is usually the correct
choice. If specified, it must be one of the following:

– "2" - the first revision of BCrypt, which suffers from a minor security flaw and is gener-
ally not used anymore.

– "2a" - some implementations suffered from rare security flaws, replaced by 2b.

– "2y" - format specific to the crypt_blowfish BCrypt implementation, identical to "2b"
in all but name.

– "2b" - latest revision of the official BCrypt algorithm, current default.

• truncate_error (bool) – By default, BCrypt will silently truncate passwords larger
than 72 bytes. Setting truncate_error=True will cause hash() to raise a
PasswordTruncateError instead.

New in version 1.7.

• relaxed (bool) – By default, providing an invalid value for one of the other keywords
will result in a ValueError. If relaxed=True, and the error can be corrected, a
PasslibHashWarning will be issued instead. Correctable errors include rounds that
are too small or too large, and salt strings that are too long.

New in version 1.6.

Changed in version 1.6: This class now supports "2y" hashes, and recognizes (but does not support) the broken
"2x" hashes. (see the crypt_blowfish bug for details).

Changed in version 1.6: Added a pure-python backend.

Changed in version 1.6.3: Added support for "2b" variant.

Changed in version 1.7: Now defaults to "2b" variant.

Bcrypt Backends

This class will use the first available of five possible backends:

1. bcrypt, if installed. 4. stdlib’s crypt.crypt(), if the host OS supports BCrypt

Unexpected indentation.

(primarily BSD-derived systems).

Block quote ends without a blank line; unexpected unindent.

5. A pure-python implementation of BCrypt, built into Passlib.

If no backends are available, hash() and verify()will throw MissingBackendError when they are invoked.
You can check which backend is in use by calling bcrypt.get_backend().

As of Passlib 1.6.3, a one-time check is peformed when the backend is first loaded, to detect the backend’s capabilities
& bugs. If this check detects a fatal bug, a PasslibSecurityError will be raised. This generally means you
need to upgrade the external package being used as the backend (this will be detailed in the error message).

Warning: The pure-python backend (#5) is disabled by default!

That backend is currently too slow to be usable given the number of rounds required for secu-
rity. That said, if you have no other alternative and need to use it, set the environmental variable
PASSLIB_BUILTIN_BCRYPT="enabled" before importing Passlib.

76 Chapter 3. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://pypi.python.org/pypi/bcrypt
https://docs.python.org/3/library/crypt.html#crypt.crypt

Passlib Documentation, Release 1.8.0.dev0

What’s “too slow”? Passlib’s rounds selection guidelines currently require BCrypt be able to do at least 12 cost in
under 300ms. By this standard the pure-python backend is 128x too slow under CPython 2.7, and 16x too slow
under PyPy 1.8. (speedups are welcome!)

Format & Algorithm

Bcrypt is compatible with the Modular Crypt Format, and uses a number of identifying prefixes: 2, $2a$, $2x$,
$2y$, and $2b$. Each prefix indicates a different revision of the BCrypt algorithm; and all but the $2b$ identifier
are considered deprecated.

An example hash (of password) is:

$2b$12$GhvMmNVjRW29ulnudl.LbuAnUtN/LRfe1JsBm1Xu6LE3059z5Tr8m

Bcrypt hashes have the format $2a$rounds$saltchecksum, where:

• rounds is a cost parameter, encoded as 2 zero-padded decimal digits, which determines the number of itera-
tions used via iterations=2**rounds (rounds is 12 in the example).

• salt is a 22 character salt string, using the characters in the regexp range [./A-Za-z0-9]
(GhvMmNVjRW29ulnudl.Lbu in the example). Note that due to padding bits within the encoding, the last
character should always be one of [.Oeu]: under some bcrypt implementations, other final characters may
result in false negatives when verifying.

• checksum is a 31 character checksum, using the same characters as the salt (AnUtN/
LRfe1JsBm1Xu6LE3059z5Tr8m in the example).

While BCrypt’s basic algorithm is described in its design document1, the OpenBSD implementation2 is considered the
canonical reference, even though it differs from the design document in a few small ways.

Security Issues

• Password Truncation.

While not a security issue per-se, bcrypt does have one major limitation: password are truncated on the first
NULL byte (if any), and only the first 72 bytes of a password are hashed. . . all the rest are ignored. Furthermore,
bytes 55-72 are not fully mixed into the resulting hash (citation needed!). To work around both these issues,
many applications first run the password through a message digest such as (HMAC-) SHA2-256. Passlib offers
the premade passlib.hash.bcrypt_sha256 - BCrypt+SHA256 to take care of this issue.

Deviations

This implementation of bcrypt differs from others in a few ways:

• Restricted salt string character set:

BCrypt does not specify what the behavior should be when passed a salt string outside of the regexp range
[./A-Za-z0-9]. In order to avoid this situation, Passlib strictly limits salts to the allowed character set, and
will throw a ValueError if an invalid salt character is encountered.

• Unicode Policy:

1 the bcrypt format specification - http://www.usenix.org/event/usenix99/provos/provos_html/
2 the OpenBSD BCrypt source - http://www.openbsd.org/cgi-bin/cvsweb/src/lib/libc/crypt/bcrypt.c

3.7. passlib.hash - Password Hashing Schemes 77

https://docs.python.org/3/library/exceptions.html#ValueError
http://www.usenix.org/event/usenix99/provos/provos_html/
http://www.openbsd.org/cgi-bin/cvsweb/src/lib/libc/crypt/bcrypt.c

Passlib Documentation, Release 1.8.0.dev0

The underlying algorithm takes in a password specified as a series of non-null bytes, and does not specify what
encoding should be used; though a us-ascii compatible encoding is implied by nearly all implementations
of bcrypt as well as all known reference hashes.

In order to provide support for unicode strings, Passlib will encode unicode passwords using utf-8 before
running them through bcrypt. If a different encoding is desired by an application, the password should be
encoded before handing it to Passlib.

• Padding Bits

BCrypt’s base64 encoding results in the last character of the salt encoding only 2 bits of data, the remaining 4
are “padding” bits. Similarly, the last character of the digest contains 4 bits of data, and 2 padding bits. Because
of the way they are coded, many BCrypt implementations will reject all passwords if these padding bits are not
set to 0. Due to a legacy issue with Passlib <= 1.5.2, Passlib will print a warning if it encounters hashes with any
padding bits set, and then validate the hash as if the padding bits were cleared. (This behavior will eventually
be deprecated and such hashes will throw a ValueError instead).

• The crypt_blowfish 8-bit bug

Pre-1.1 versions of the crypt_blowfish bcrypt implementation suffered from a serious flaw3 in how they handled
8-bit passwords. The manner in which the flaw was fixed resulted in crypt_blowfish adding support for two new
BCrypt hash identifiers:

$2x$, allowing sysadmins to mark any $2a$ hashes which were potentially generated with the buggy algo-
rithm. Passlib 1.6 recognizes (but does not currently support generating or verifying) these hashes.

$2y$, the default for crypt_blowfish 1.1-1.2, indicates the hash was generated with the canonical OpenBSD-
compatible algorithm, and should match correctly generated $2a$ hashes. Passlib 1.6 can generate and verify
these hashes.

As well, crypt_blowfish 1.2 modified the way it generates $2a$ hashes, so that passwords containing the byte
value 0xFF are hashed in a manner incompatible with either the buggy or canonical algorithms. Passlib does not
support this algorithmic variant either, though it should be very rarely encountered in practice.

(crypt_blowfish 1.3 switched to the $2b$ standard as the default)

Changed in version 1.6.3: Passlib will now throw a PasslibSecurityError if an attempt is made to use
any backend which is vulnerable to this bug.

• The ‘BSD wraparound’ bug

OpenBSD <= 5.4, and most bcrypt libraries derived from it’s source, are vulnerable to a ‘wraparound’ bug4,
where passwords larger than 254 characters will be incorrectly hashed using only the first few characters of the
string, resulting in a severely weakened hash.

OpenBSD 5.5 fixed this flaw, and introduced the $2b$ hash identifier to indicate the hash was generated with
the correct algorithm.

py-bcrypt <= 0.4 is known to be vulnerable to this, as well as the os_crypt backend (if running on a vulnerable
operating system).

Passlib 1.6.3 adds the following:

– Support for the $2b$ hash format (though for backward compat it has not been made the default yet).

– Detects if the active backend is vulnerable to the bug, issues a warning, and enables a workaround so that
vulnerable passwords will still be hashed correctly. (This does mean that existing hashes suffering this
vulnerability will no longer verify using their correct password).

3 The flaw in pre-1.1 crypt_blowfish is described here - CVE-2011-2483
4 The wraparound flaw is described here - http://www.openwall.com/lists/oss-security/2012/01/02/4

78 Chapter 3. API Reference

https://docs.python.org/3/library/exceptions.html#ValueError
http://www.openwall.com/crypt/
http://undeadly.org/cgi?action=article&sid=20140224132743
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2011-2483
http://www.openwall.com/lists/oss-security/2012/01/02/4

Passlib Documentation, Release 1.8.0.dev0

passlib.hash.sha256_crypt - SHA-256 Crypt

SHA-256 Crypt and SHA-512 Crypt were developed in 2008 by Ulrich Drepper1, designed as the successor to
md5_crypt. They include fixes and advancements such as variable rounds, and use of NIST-approved cryptographic
primitives. The design involves repeated composition of the underlying digest algorithm, using various arbitrary per-
mutations of inputs. SHA-512 / SHA-256 Crypt are currently the default password hash for many systems (notably
Linux), and have no known weaknesses. SHA-256 Crypt is one of the four hashes Passlib recommends for new
applications. This class can be used directly as follows:

>>> from passlib.hash import sha256_crypt

>>> # generate new salt, hash password
>>> hash = sha256_crypt.hash("password")
>>> hash
'5rounds=80000$wnsT7Yr92oJoP28r$cKhJImk5mfuSKV9b3mumNzlbstFUplKtQXXMo4G6Ep5'

>>> # same, but with explict number of rounds
>>> sha256_crypt.using(rounds=12345).hash("password")
'5rounds=12345$q3hvJE5mn5jKRsW.$BbbYTFiaImz9rTy03GGi.Jf9YY5bmxN0LU3p3uI1iUB'

>>> # verify password
>>> sha256_crypt.verify("password", hash)
True
>>> sha256_crypt.verify("letmein", hash)
False

See also:

• password hash usage – for more usage examples

• sha512_crypt – the companion 512-bit version of this hash.

Interface

class passlib.hash.sha256_crypt
This class implements the SHA256-Crypt password hash, and follows the PasswordHash API.

It supports a variable-length salt, and a variable number of rounds.

The using() method accepts the following optional keywords:

Parameters

• salt (str) – Optional salt string. If not specified, one will be autogenerated (this is
recommended). If specified, it must be 0-16 characters, drawn from the regexp range [./
0-9A-Za-z].

• rounds (int) – Optional number of rounds to use. Defaults to 535000, must be between
1000 and 999999999, inclusive.

Note: per the official specification, when the rounds parameter is set to 5000, it may be
omitted from the hash string.

• relaxed (bool) – By default, providing an invalid value for one of the other keywords
will result in a ValueError. If relaxed=True, and the error can be corrected, a

1 Ulrich Drepper’s SHA-256/512-Crypt specification, reference implementation, and test vectors - sha-crypt specification

3.7. passlib.hash - Password Hashing Schemes 79

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
http://www.akkadia.org/drepper/sha-crypt.html

Passlib Documentation, Release 1.8.0.dev0

PasslibHashWarning will be issued instead. Correctable errors include rounds that
are too small or too large, and salt strings that are too long.

New in version 1.6.

Note: This class will use the first available of two possible backends:

• stdlib crypt(), if the host OS supports SHA256-Crypt (most Linux systems).

• a pure python implementation of SHA256-Crypt built into Passlib.

You can see which backend is in use by calling the get_backend() method.

Format & Algorithm

An example sha256-crypt hash (of the string password) is:

5rounds=80000$wnsT7Yr92oJoP28r$cKhJImk5mfuSKV9b3mumNzlbstFUplKtQXXMo4G6Ep5

An sha256-crypt hash string has the format 5rounds=rounds$salt$checksum, where:

• 5 is the prefix used to identify sha256-crypt hashes, following the Modular Crypt Format

• rounds is the decimal number of rounds to use (80000 in the example).

• salt is 0-16 characters drawn from [./0-9A-Za-z], providing a 96-bit salt (wnsT7Yr92oJoP28r in the
example).

• checksum is 43 characters drawn from the same set, encoding a 256-bit checksum
(cKhJImk5mfuSKV9b3mumNzlbstFUplKtQXXMo4G6Ep5 in the example).

The official implementation allows omitting the rounds section when it’s set to 5000, resulting in an alternate hash
format: 5salt$checksum. (Passlib supports this via the implicit_rounds constructor parameter).

The algorithm used by SHA256-Crypt is laid out in detail in the specification document linked to below1.

Security Issues

• The algorithm’s initialization stage contains a loop which varies linearly with the square of the password size;
and further loops which vary linearly with the password size * rounds.

– This means an attacker could provide a maliciously large password at the login screen to attempt a DOS
on a publically visible login. For example, a 32kib password would require hashing 1gib of data. Passlib
mitigates this by limiting the maximum password size to 4k by default.

– An attacker could also theoretically determine a password’s size by observing the time taken on a success-
ful login, and then attempting verification themselves to find the size password which has an equivalent
delay. This has not been applied in practice, probably due to the fact that (for normal passwords < 64
bytes), the contribution of the password size to the overall time taken is below the observable noise level
when evesdropping on the timings of successful logins for a single user.

Deviations

This implementation of sha256-crypt differs from the specification, and other implementations, in a few ways:

80 Chapter 3. API Reference

Passlib Documentation, Release 1.8.0.dev0

• Zero-Padded Rounds:

The specification does not specify how to deal with zero-padding within the rounds portion of the hash. No
existing examples or test vectors have zero padding, and allowing it would result in multiple encodings for the
same configuration / hash. To prevent this situation, Passlib will throw an error if the rounds parameter in a hash
has leading zeros.

• Restricted salt string character set:

The underlying algorithm can unambiguously handle salt strings which contain any possible byte value besides
\x00 and $. However, Passlib strictly limits salts to the hash64 character set, as nearly all implementations
of sha256-crypt generate and expect salts containing those characters, but may have unexpected behaviors for
other character values.

• Unicode Policy:

The underlying algorithm takes in a password specified as a series of non-null bytes, and does not specify what
encoding should be used; though a us-ascii compatible encoding is implied by nearly all implementations
of sha256-crypt as well as all known reference hashes.

In order to provide support for unicode strings, Passlib will encode unicode passwords using utf-8 before
running them through sha256-crypt. If a different encoding is desired by an application, the password should be
encoded before handing it to Passlib.

passlib.hash.sha512_crypt - SHA-512 Crypt

Defined by the same specification as sha256_crypt, SHA512-Crypt is identical to SHA256-Crypt in almost every
way, including design and security issues. The only difference is the doubled digest size; while this provides some
increase in security, it’s also a bit slower 32 bit operating systems.

See also:

• password hash usage – for examples of how to use this class via the common hash interface.

• sha256_crypt – the companion 256-bit version of this hash.

Interface

class passlib.hash.sha512_crypt
This class implements the SHA512-Crypt password hash, and follows the PasswordHash API.

It supports a variable-length salt, and a variable number of rounds.

The using() method accepts the following optional keywords:

Parameters

• salt (str) – Optional salt string. If not specified, one will be autogenerated (this is
recommended). If specified, it must be 0-16 characters, drawn from the regexp range [./
0-9A-Za-z].

• rounds (int) – Optional number of rounds to use. Defaults to 656000, must be between
1000 and 999999999, inclusive.

Note: per the official specification, when the rounds parameter is set to 5000, it may be
omitted from the hash string.

3.7. passlib.hash - Password Hashing Schemes 81

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Passlib Documentation, Release 1.8.0.dev0

• relaxed (bool) – By default, providing an invalid value for one of the other keywords
will result in a ValueError. If relaxed=True, and the error can be corrected, a
PasslibHashWarning will be issued instead. Correctable errors include rounds that
are too small or too large, and salt strings that are too long.

New in version 1.6.

Note: This class will use the first available of two possible backends:

• stdlib crypt(), if the host OS supports SHA512-Crypt (most Linux systems).

• a pure python implementation of SHA512-Crypt built into passlib.

You can see which backend is in use by calling the get_backend() method.

Format & Algorithm

SHA512-Crypt is defined by the same specification as SHA256-Crypt. The format and algorithm are exactly the same,
except for the following notable differences:

• it uses the modular crypt prefix 6, whereas SHA256-Crypt uses 5.

• it uses the SHA-512 message digest in place of the SHA-256 message digest.

• its output hash is correspondingly larger in size, with an 86-character encoded checksum, instead of 43 charac-
ters.

See sha256_crypt for the format and algorithm descriptions, as well as security notes.

Special note should be made of the following fallback helper, which is not an actual hash scheme, but implements the
“disabled account marker” found in many Linux & BSD password files:

passlib.hash.unix_disabled - Unix Disabled Account Helper

This class does not provide an encryption scheme, but instead provides a helper for handling disabled password fields
as found in unix /etc/shadow files. This class is mainly useful only for plugging into a CryptContext instance.
It can be used directly as follows:

>>> from passlib.hash import unix_disabled

>>> # 'hashing' a password always results in "!" or "*"
>>> unix_disabled.hash("password")
'!'

>>> # verifying will fail for all passwords and hashes
>>> unix_disabled.verify("password", "!")
False
>>> unix_disabled.verify("letmein", "*NOPASSWORD*")
False

>>> # this class should identify all strings which aren't
>>> # valid Unix crypt() output, while leaving MCF hashes alone
>>> unix_disabled.identify('!')
True
>>> unix_disabled.identify('')
True

(continues on next page)

82 Chapter 3. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError

Passlib Documentation, Release 1.8.0.dev0

(continued from previous page)

>>> unix_disabled.identify("1somehash")
False

Interface

class passlib.hash.unix_disabled
This class provides disabled password behavior for unix shadow files, and follows the PasswordHash API.

This class does not implement a hash, but instead matches the “disabled account” strings found in /etc/
shadow on most Unix variants. “encrypting” a password will simply return the disabled account marker. It
will reject all passwords, no matter the hash string. The hash() method supports one optional keyword:

Parameters marker (str) – Optional marker string which overrides the platform default used to
indicate a disabled account.

If not specified, this will default to "*" on BSD systems, and use the Linux default "!" for all
other platforms. (unix_disabled.default_marker will contain the default value)

New in version 1.6: This class was added as a replacement for the now-removed unix_fallback class.

Deviations

According to the Linux shadow man page, an empty string is treated as a wildcard by Linux, allowing all passwords.
For security purposes, this behavior is NOT supported; empty strings are treated the same as ! or *.

3.7.2.2 Deprecated Unix Hashes

The following schemes are supported by various Unix systems using the modular crypt format, but are no longer
considered secure, and have been deprecated in favor of the Active Unix Hashes (above).

• passlib.hash.bsd_nthash - FreeBSD’s MCF-compatible encoding of nthash digests

passlib.hash.md5_crypt - MD5 Crypt

Danger: This algorithm is not considered secure by modern standards. It should only be used when verifying
existing hashes, or when interacting with applications that require this format. For new code, see the list of
recommended hashes.

This algorithm was developed for FreeBSD in 1994 by Poul-Henning Kamp, to replace the aging passlib.hash.
des_crypt. It has since been adopted by a wide variety of other Unix flavors, and is found in many other contexts
as well. Due to its origins, it’s sometimes referred to as “FreeBSD MD5 Crypt”. Security-wise it should now be
considered weak, and most Unix flavors have since replaced it with stronger schemes (such as sha512_crypt and
bcrypt).

This is also referred to on Cisco IOS systems as a “type 5” hash. The format and algorithm are identical, though Cisco
seems to require 4 salt characters instead of the full 8 characters used by most systems3.

The md5_crypt class can be can be used directly as follows:
3 Note about Cisco Type 5 salt size - http://serverfault.com/a/46399.

3.7. passlib.hash - Password Hashing Schemes 83

https://docs.python.org/3/library/stdtypes.html#str
http://serverfault.com/a/46399

Passlib Documentation, Release 1.8.0.dev0

>>> from passlib.hash import md5_crypt

>>> # generate new salt, hash password
>>> h = md5_crypt.hash("password")
>>> h
'$1$3azHgidD$SrJPt7B.9rekpmwJwtON31'

>>> # verify the password
>>> md5_crypt.verify("password", h)
True
>>> md5_crypt.verify("secret", h)
False

>>> # hash password using cisco-compatible 4-char salt
>>> md5_crypt.using(salt_size=4).hash("password")
'1wu98$9UuD3hvrwehnqyF1D548N0'

See also:

• password hash usage – for more usage examples

• apr_md5_crypt – Apache’s variant of this algorithm.

Interface

class passlib.hash.md5_crypt
This class implements the MD5-Crypt password hash, and follows the PasswordHash API.

It supports a variable-length salt.

The using() method accepts the following optional keywords:

Parameters

• salt (str) – Optional salt string. If not specified, one will be autogenerated (this is
recommended). If specified, it must be 0-8 characters, drawn from the regexp range [./
0-9A-Za-z].

• salt_size (int) – Optional number of characters to use when autogenerating new salts.
Defaults to 8, but can be any value between 0 and 8. (This is mainly needed when generating
Cisco-compatible hashes, which require salt_size=4).

• relaxed (bool) – By default, providing an invalid value for one of the other keywords
will result in a ValueError. If relaxed=True, and the error can be corrected, a
PasslibHashWarning will be issued instead. Correctable errors include salt strings
that are too long.

New in version 1.6.

Note: This class will use the first available of two possible backends:

• stdlib crypt(), if the host OS supports MD5-Crypt (most Unix systems).

• a pure python implementation of MD5-Crypt built into Passlib.

You can see which backend is in use by calling the get_backend() method.

84 Chapter 3. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError

Passlib Documentation, Release 1.8.0.dev0

Format

An example md5-crypt hash (of the string password) is $1$5pZSV9va$azfrPr6af3Fc7dLblQXVa0.

An md5-crypt hash string has the format 1salt$checksum, where:

• 1 is the prefix used to identify md5-crypt hashes, following the Modular Crypt Format

• salt is 0-8 characters drawn from the regexp range [./0-9A-Za-z]; providing a 48-bit salt (5pZSV9va
in the example).

• checksum is 22 characters drawn from the same character set as the salt; encoding a 128-bit checksum
(azfrPr6af3Fc7dLblQXVa0 in the example).

Algorithm

The MD5-Crypt algorithm1 calculates a checksum as follows:

1. A password string and salt string are provided.

(The salt should not include the magic prefix, it should match the string referred to as salt in the format
section, above).

2. If needed, the salt should be truncated to a maximum of 8 characters.

3. Start MD5 digest B.

4. Add the password to digest B.

5. Add the salt to digest B.

6. Add the password to digest B.

7. Finish MD5 digest B.

8. Start MD5 digest A.

9. Add the password to digest A.

10. Add the constant string 1 to digest A. (The Apache variant of MD5-Crypt uses $apr1$ instead, this is the
only change made by this variant).

11. Add the salt to digest A.

12. For each block of 16 bytes in the password string, add digest B to digest A.

13. For the remaining N bytes of the password string, add the first N bytes of digest B to digest A.

14. For each bit in the binary representation of the length of the password string; starting with the lowest value bit,
up to and including the largest-valued bit that is set to 1:

a. If the current bit is set 1, add the first character of the password to digest A.

b. Otherwise, add a NULL character to digest A.

(If the password is the empty string, step 14 is omitted entirely).

15. Finish MD5 digest A.

16. For 1000 rounds (round values 0..999 inclusive), perform the following steps:

a. Start MD5 Digest C for the round.

1 The authoritative reference for MD5-Crypt is Poul-Henning Kamp’s original FreeBSD implementation - http://www.freebsd.org/cgi/cvsweb.
cgi/~checkout~/src/lib/libcrypt/crypt.c?rev=1.2

3.7. passlib.hash - Password Hashing Schemes 85

http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/lib/libcrypt/crypt.c?rev=1.2
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/lib/libcrypt/crypt.c?rev=1.2

Passlib Documentation, Release 1.8.0.dev0

b. If the round is odd, add the password to digest C.

c. If the round is even, add the previous round’s result to digest C (for round 0, add digest A instead).

d. If the round is not a multiple of 3, add the salt to digest C.

e. If the round is not a multiple of 7, add the password to digest C.

f. If the round is even, add the password to digest C.

g. If the round is odd, add the previous round’s result to digest C (for round 0, add digest A instead).

h. Use the final value of MD5 digest C as the result for this round.

17. Transpose the 16 bytes of the final round’s result in the following order: 12,6,0,13,7,1,14,8,2,15,9,
3,5,10,4,11.

18. Encode the resulting 16 byte string into a 22 character hash64-encoded string (the 2 msb bits encoded by the
last hash64 character are used as 0 padding). This results in the portion of the md5 crypt hash string referred to
as checksum in the format section.

Security Issues

MD5-Crypt has a couple of issues which have weakened severely:

• It relies on the MD5 message digest, for which theoretical pre-image attacks exist2.

• More seriously, its fixed number of rounds (combined with the availability of high-throughput MD5 imple-
mentations) means this algorithm is increasingly vulnerable to brute force attacks. It is this issue which has
motivated its replacement by new algorithms such as bcrypt and sha512_crypt.

Deviations

Passlib’s implementation of md5-crypt differs from the reference implementation (and others) in two ways:

• Restricted salt string character set:

The underlying algorithm can unambiguously handle salt strings which contain any possible byte value besides
\x00 and $. However, Passlib strictly limits salts to the hash64 character set, as nearly all implementations of
md5-crypt generate and expect salts containing those characters, but may have unexpected behaviors for other
character values.

• Unicode Policy:

The underlying algorithm takes in a password specified as a series of non-null bytes, and does not specify what
encoding should be used; though a us-ascii compatible encoding is implied by nearly all implementations
of md5-crypt as well as all known reference hashes.

In order to provide support for unicode strings, Passlib will encode unicode passwords using utf-8 before
running them through md5-crypt. If a different encoding is desired by an application, the password should be
encoded before handing it to Passlib.

passlib.hash.sha1_crypt - SHA-1 Crypt

SHA1-Crypt is a hash algorithm introduced by NetBSD in 2004. It’s based on a variation of the PBKDF1 algorithm,
and supports a large salt and variable number of rounds.

2 Security issues with MD5 - http://en.wikipedia.org/wiki/MD5#Security.

86 Chapter 3. API Reference

http://en.wikipedia.org/wiki/MD5#Security

Passlib Documentation, Release 1.8.0.dev0

See also:

password hash usage – for examples of how to use this class via the common hash interface.

Interface

class passlib.hash.sha1_crypt
This class implements the SHA1-Crypt password hash, and follows the PasswordHash API.

It supports a variable-length salt, and a variable number of rounds.

The using() method accepts the following optional keywords:

Parameters

• salt (str) – Optional salt string. If not specified, an 8 character one will be autogenerated
(this is recommended). If specified, it must be 0-64 characters, drawn from the regexp range
[./0-9A-Za-z].

• salt_size (int) – Optional number of bytes to use when autogenerating new salts.
Defaults to 8 bytes, but can be any value between 0 and 64.

• rounds (int) – Optional number of rounds to use. Defaults to 480000, must be between
1 and 4294967295, inclusive.

• relaxed (bool) – By default, providing an invalid value for one of the other keywords
will result in a ValueError. If relaxed=True, and the error can be corrected, a
PasslibHashWarning will be issued instead. Correctable errors include rounds that
are too small or too large, and salt strings that are too long.

New in version 1.6.

Note: This class will use the first available of two possible backends:

• stdlib crypt(), if the host OS supports sha1-crypt (NetBSD).

• a pure python implementation of sha1-crypt built into Passlib.

You can see which backend is in use by calling the get_backend() method.

Format

An example hash (of password) is $sha1$40000$jtNX3nZ2$hBNaIXkt4wBI2o5rsi8KejSjNqIq. An
sha1-crypt hash string has the format $sha1$rounds$salt$checksum, where:

• $sha1$ is the prefix used to identify sha1-crypt hashes, following the Modular Crypt Format

• rounds is the decimal number of rounds to use (40000 in the example).

• salt is 0-64 characters drawn from [./0-9A-Za-z] (jtNX3nZ2 in the example).

• checksum is 28 characters drawn from the same set, encoding a 168-bit checksum.
(hBNaIXkt4wBI2o5rsi8KejSjNqIq/ in the example).

3.7. passlib.hash - Password Hashing Schemes 87

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError

Passlib Documentation, Release 1.8.0.dev0

Algorithm

The checksum is calculated using a modified version of PBKDF13, replacing its use of the SHA1 message digest with
HMAC-SHA1, (which does not suffer from the current vulnerabilities that SHA1 itself does, as well as providing
some of the advancements made in PBKDF2).

• first, the HMAC-SHA1 digest of salt$sha1$rounds is generated, using the password as the HMAC-SHA1
key.

• then, for rounds-1 iterations, the previous HMAC-SHA1 digest is fed back through HMAC-SHA1, again
using the password as the HMAC-SHA1 key.

• the checksum is then rendered into hash-64 format using an ordering that roughly corresponds to big-endian
encoding of 24-bit chunks (see passlib.hash.sha1_crypt._chk_offsets for exact byte order).

Deviations

This implementation of sha1-crypt differs from the NetBSD implementation in a few ways:

• Default Rounds:

The NetBSD implementation randomly varies the actual number of rounds when generating a new configu-
ration string, in order to decrease predictability. This feature is provided by Passlib to all hashes, via the
CryptContext class, and so it omitted from this implementation.

• Zero-Padded Rounds:

The specification does not specify how to deal with zero-padding within the rounds portion of the hash. No
existing examples or test vectors have zero padding, and allowing it would result in multiple encodings for the
same configuration / hash. To prevent this situation, Passlib will throw an error if the rounds in a hash have
leading zeros.

• Restricted salt string character set:

The underlying algorithm can unambiguously handle salt strings which contain any possible byte value besides
\x00 and $. However, Passlib strictly limits salts to the hash64 character set, as nearly all implementations
of sha1-crypt generate and expect salts containing those characters.

• Unicode Policy:

The underlying algorithm takes in a password specified as a series of non-null bytes, and does not specify what
encoding should be used; though a us-ascii compatible encoding is implied by nearly all known reference
hashes.

In order to provide support for unicode strings, Passlib will encode unicode passwords using utf-8 before
running them through sha1-crypt. If a different encoding is desired by an application, the password should be
encoded before handing it to Passlib.

passlib.hash.sun_md5_crypt - Sun MD5 Crypt

This algorithm was developed by Alec Muffett1 for Solaris, as a replacement for the aging des_crypt. It was
introduced in Solaris 9u2. While based on the MD5 message digest, it has very little at all in common with the
md5_crypt algorithm. It supports 32 bit variable rounds and an 8 character salt.

See also:
3 rfc defining PBKDF1 & PBKDF2 - http://tools.ietf.org/html/rfc2898 -
1 Overview of & motivations for the algorithm - http://dropsafe.crypticide.com/article/1389

88 Chapter 3. API Reference

http://tools.ietf.org/html/rfc2898
http://dropsafe.crypticide.com/article/1389

Passlib Documentation, Release 1.8.0.dev0

password hash usage – for examples of how to use this class via the common hash interface.

Note: The original Solaris implementation has some hash encoding quirks which may not be properly accounted for
in Passlib. Until more user feedback and sample hashes have been gathered, caveat emptor.

Interface

class passlib.hash.sun_md5_crypt
This class implements the Sun-MD5-Crypt password hash, and follows the PasswordHash API.

It supports a variable-length salt, and a variable number of rounds.

The using() method accepts the following optional keywords:

Parameters

• salt (str) – Optional salt string. If not specified, a salt will be autogenerated (this is
recommended). If specified, it must be drawn from the regexp range [./0-9A-Za-z].

• salt_size (int) – If no salt is specified, this parameter can be used to specify the size
(in characters) of the autogenerated salt. It currently defaults to 8.

• rounds (int) – Optional number of rounds to use. Defaults to 34000, must be between 0
and 4294963199, inclusive.

• bare_salt (bool) – Optional flag used to enable an alternate salt digest behavior used
by some hash strings in this scheme. This flag can be ignored by most users. Defaults to
False. (see Bare Salt Issue for details).

• relaxed (bool) – By default, providing an invalid value for one of the other keywords
will result in a ValueError. If relaxed=True, and the error can be corrected, a
PasslibHashWarning will be issued instead. Correctable errors include rounds that
are too small or too large, and salt strings that are too long.

New in version 1.6.

Format

An example hash (of passwd) is $md5,rounds=5000$GUBv0xjJ$$mSwgIswdjlTY0YxV7HBVm0. A sun-
md5-crypt hash string has the format $md5,rounds=rounds$salt$$checksum, where:

• $md5, is the prefix used to identify the hash.

• rounds is the decimal number of rounds to use (5000 in the example).

• salt is 0-8 salt characters drawn from [./0-9A-Za-z] (GUBv0xjJ in the example).

• checksum is 22 characters drawn from the same set, encoding a 128-bit checksum
(mSwgIswdjlTY0YxV7HBVm0 in the example).

An alternate format, $md5$salt$$checksum is used when the rounds value is 0.

There also exists some hashes which have only a single $ between the salt and the checksum; these have a slightly
different checksum calculation (see Bare Salt Issue for details).

Note: Solaris seems to deviate from the Modular Crypt Format in that it considers , to indicate the end of the
identifier in addition to $.

3.7. passlib.hash - Password Hashing Schemes 89

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError

Passlib Documentation, Release 1.8.0.dev0

Algorithm

The algorithm used is based around the MD5 message digest and the “Muffett Coin Toss” algorithm.

1. Given a password, the number of rounds, and a salt string.

2. an initial MD5 digest is created from the concatenation of the password, and the configuration string (using the
format $md5,rounds=rounds$salt$, or $md5$salt$ if rounds is 0).

(See Bare Salt Issue for details about an issue affecting this step)

3. for rounds+4096 iterations, a new digest is created:

i. a buffer is initialized, containing the previous round’s MD5 digest (for the first round, the digest from
step 2 is used).

ii. MuffetCoinToss(rounds, previous digest) is called, resulting in a 0 or 1.

iii. If step 3.ii results in a 1, a constant data string is added to the buffer; if the result is a 0, the string is
not added for this round. The constant data string is a 1517 byte excerpt from Hamlet2 (To be, or
not to be...all my sins remember'd.\n), including an appended null character.

iv. the current iteration as a zero-indexed integer is converted to a string (not zero-padded) and added to
the buffer.

v. the output for this iteration is the MD5 digest of the buffer’s contents.

4. The final digest is then encoded into hash64 format using the same transposed byte order that md5_crypt
uses, and returned.

Muffet Coin Toss

The Muffet Coin Toss algorithm is as follows: Given the current round number, and a 16 byte MD5 digest, it returns
a 0 or 1, using the following formula:

Note: All references below to a specific bit of the digest should be interpreted mod 128. All references below to a
specific byte of the digest should be interpreted mod 16.

1. A 8-bit integer X is generated from the following formula: for each i in 0..7 inclusive:

• let A be the i’th byte of the digest, as an 8-bit int.

• let B be the i+3’rd byte of the digest, as an 8-bit int.

• let R be A shifted right by B % 5 bits.

• let V be the R’th byte of the digest.

• if the A % 8’th bit of B is 1, divide V by 2.

• use the V ’th bit of the digest as the i’th bit of X .

2. Another 8-bit integer, Y , is generated exactly the same manner as X , except that:

• A is the i+8’th byte of the digest,

• B is the i+11’th byte of the digest.

3. if bit round of the digest is 1, X is divided by 2.

4. if bit round+64 of the digest is 1, Y is divided by 2.

2 The source of Hamlet’s speech, used byte-for-byte as the constant data - http://www.ibiblio.org/pub/docs/books/gutenberg/etext98/2ws2610.txt

90 Chapter 3. API Reference

http://www.ibiblio.org/pub/docs/books/gutenberg/etext98/2ws2610.txt

Passlib Documentation, Release 1.8.0.dev0

5. the final result is X’th bit of the digest XORed against Y’th bit of the digest.

Bare Salt Issue

According to the only existing documentation of this algorithm1, its hashes were supposed to have the format
$md5$salt$checksum, and include only the bare string $md5$salt in the salt digest step (see step 2, above).

However, almost all hashes encountered in production environments have the format $md5$salt$$checksum
(note the double $$). Unfortunately, it is not merely a cosmetic difference: hashes of this format incorporate the first
$ after the salt within the salt digest step, so the resulting checksum is different.

The documentation hints that this stems from a bug within the production implementation’s parser. This bug causes
the implementation to return $$-format hashes when passed a configuration string that ends with $. It returns the
intended original format & checksum only if there is at least one letter after the $, e.g. $md5$salt$x.

Passlib attempts to accommodate both formats using the special bare_salt keyword. It is set to True to indicate a
configuration or hash string which contains only a single $, and does not incorporate it into the hash calculation. The
$$ hash is encountered more often in production since it seems the Solaris salt generator always appends a $; because
of this bare_salt=False was chosen as the default, so that hashes will be generated which by default conform to
what users are used to.

Deviations

Passlib’s implementation of Sun-MD5-Crypt deliberately deviates from the official implementation in the following
ways:

• Unicode Policy:

The underlying algorithm takes in a password specified as a series of non-null bytes, and does not specify what
encoding should be used; though a us-ascii compatible encoding is implied by all known reference hashes.

In order to provide support for unicode strings, Passlib will encode unicode passwords using utf-8 before
running them through sun-md5-crypt. If a different encoding is desired by an application, the password should
be encoded before handing it to Passlib.

• Rounds encoding

The underlying scheme implicitly allows rounds to have zero padding (e.g. $md5,rounds=001$abc$), and
also allows 0 rounds to be specified two ways ($md5$abc$ and $md5,rounds=0$abc$). Allowing either
of these would result in multiple possible checksums for the same password & salt. To prevent ambiguity,
Passlib will throw a ValueError if the rounds value is zero-padded, or specified explicitly as 0 (e.g. $md5,
rounds=0abc).

Given the lack of documentation, lack of test vectors, and known bugs which accompany the original Solaris imple-
mentation, Passlib may not accurately be able to generate and verify all hashes encountered in a Solaris environment.
Issues of concern include:

• Some hashes found on the web use a $ in place of the ,. It is unclear whether this is an accepted alternate format
or just a typo, nor whether this is supposed to affect the checksum in the resulting hash string.

• The current implementation needs addition test vectors; especially ones which contain an explicitly specific
number of rounds.

• More information is needed about the parsing / formatting issue described in the Bare Salt Issue section.

3.7. passlib.hash - Password Hashing Schemes 91

https://docs.python.org/3/library/exceptions.html#ValueError

Passlib Documentation, Release 1.8.0.dev0

3.7.2.3 Archaic Unix Hashes

The following schemes are supported by certain Unix systems, but are considered particularly archaic: Not only do
they predate the modular crypt format, but they’re based on the outmoded DES block cipher, and are woefully insecure:

passlib.hash.des_crypt - DES Crypt

Danger: This algorithm is dangerously insecure by modern standards. It is trivially broken, and should not
be used if at all possible. For new code, see the list of recommended hashes.

This class implements the original DES-based Unix Crypt algorithm. While no longer in active use in most places, it
is supported for legacy purposes by many Unix flavors. It can used directly as follows:

>>> from passlib.hash import des_crypt

>>> # generate new salt, hash password
>>> hash = des_crypt.hash("password")
'JQMuyS6H.AGMo'

>>> # verify the password
>>> des_crypt.verify("password", hash)
True
>>> des_crypt.verify("letmein", hash)
False

See also:

the generic PasswordHash usage examples

Interface

class passlib.hash.des_crypt
This class implements the des-crypt password hash, and follows the PasswordHash API.

It supports a fixed-length salt.

The using() method accepts the following optional keywords:

Parameters

• salt (str) – Optional salt string. If not specified, one will be autogenerated (this is
recommended). If specified, it must be 2 characters, drawn from the regexp range [./
0-9A-Za-z].

• truncate_error (bool) – By default, des_crypt will silently truncate passwords
larger than 8 bytes. Setting truncate_error=True will cause hash() to raise a
PasswordTruncateError instead.

New in version 1.7.

• relaxed (bool) – By default, providing an invalid value for one of the other keywords
will result in a ValueError. If relaxed=True, and the error can be corrected, a
PasslibHashWarning will be issued instead. Correctable errors include salt strings
that are too long.

New in version 1.6.

92 Chapter 3. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError

Passlib Documentation, Release 1.8.0.dev0

Note: This class will use the first available of two possible backends:

• stdlib crypt(), if the host OS supports DES-Crypt (most Unix systems).

• a pure Python implementation of DES-Crypt built into Passlib.

You can see which backend is in use by calling the get_backend() method.

Format

A des-crypt hash string consists of 13 characters, drawn from [./0-9A-Za-z]. The first 2 characters form a
hash64-encoded 12 bit integer used as the salt, with the remaining characters forming a hash64-encoded 64-bit
integer checksum.

A des-crypt configuration string is also accepted by this module, consists of only the first 2 characters, corresponding
to the salt only.

An example hash (of the string password) is JQMuyS6H.AGMo, where the salt is JQ, and the checksum MuyS6H.
AGMo.

Algorithm

The checksum is formed by a modified version of the DES cipher in encrypt mode:

1. Given a password string and a salt string.

2. The 2 character salt string is decoded to a 12-bit integer salt value; The salt string uses little-endian hash64
encoding.

3. If the password is less than 8 bytes, it’s NULL padded at the end to 8 bytes.

4. The lower 7 bits of the first 8 bytes of the password are used to form a 56-bit integer; with the first byte providing
the most significant 7 bits, and the 8th byte providing the least significant 7 bits.

The remainder of the password (if any) is ignored.

5. 25 repeated rounds of modified DES encryption are performed; starting with a null input block, and using the
56-bit integer from step 4 as the DES key.

The salt is used to to mutate the normal DES encrypt operation by swapping bits i and i+24 in the DES E-Box
output if and only if bit i is set in the salt value. Thus, if the salt is set to 0, normal DES encryption is performed.
(This was intended to prevent optimized implementations of regular DES encryption to be useful in attacking
this algorithm).

6. The 64-bit result of the last round of step 5 is then lsb-padded with 2 zero bits.

7. The resulting 66-bit integer is encoded in big-endian order using the hash64-big format.

Security Issues

DES-Crypt is no longer considered secure, for a variety of reasons:

• Its use of the DES stream cipher, which is vulnerable to practical pre-image attacks, and considered broken, as
well as having too-small key and block sizes.

• The 12-bit salt is considered to small to defeat rainbow-table attacks (most modern algorithms provide at least a
48-bit salt).

3.7. passlib.hash - Password Hashing Schemes 93

Passlib Documentation, Release 1.8.0.dev0

• The fact that it only uses the lower 7 bits of the first 8 bytes of the password results in a dangerously small
keyspace which needs to be searched.

Deviations

This implementation of des-crypt differs from others in a few ways:

• Minimum salt string:

Some implementations of des-crypt permit empty and single-character salt strings. However, behavior in these
cases varies wildly; with implementations returning everything from errors to incorrect hashes that never vali-
date. To avoid all this, Passlib will throw an “invalid salt” if the provided salt string is not at least 2 characters.

• Restricted salt string character set:

The underlying algorithm expects salt strings to use the hash64 character set to encode a 12-bit integer. Many
implementations of des-crypt will accept a salt containing other characters, but vary wildly in how they are
handled, including errors and implementation-specific value mappings. To avoid all this, Passlib will throw an
“invalid salt” if the salt string contains any non-standard characters.

• Unicode Policy:

The original des-crypt algorithm was designed for 7-bit us-ascii encoding only (as evidenced by the fact
that it discards the 8th bit of all password bytes).

In order to provide support for unicode strings, Passlib will encode unicode passwords using utf-8 before
running them through des-crypt. If a different encoding is desired by an application, the password should be
encoded before handing it to Passlib.

passlib.hash.bsdi_crypt - BSDi Crypt

Danger: This algorithm is not considered secure by modern standards. It should only be used when verifying
existing hashes, or when interacting with applications that require this format. For new code, see the list of
recommended hashes.

This algorithm was developed by BSDi for their BSD/OS distribution. It’s based on des_crypt, and contains a
larger salt and a variable number of rounds. This algorithm is also known as “Extended DES Crypt”. It class can be
used directly as follows:

>>> from passlib.hash import bsdi_crypt

>>> # generate new salt, hash password
>>> hash = bsdi_crypt.hash("password")
>>> hash
'_7C/.Bf/4gZk10RYRs4Y'

>>> # same, but with explict number of rounds
>>> bsdi_crypt.using(rounds=10001).hash("password")
'_FQ0.amG/zwCMip7DnBk'

>>> # verify password
>>> bsdi_crypt.verify("password", hash)
True
>>> bsdi_crypt.verify("secret", hash)
False

94 Chapter 3. API Reference

Passlib Documentation, Release 1.8.0.dev0

See also:

the generic PasswordHash usage examples

Interface

class passlib.hash.bsdi_crypt
This class implements the BSDi-Crypt password hash, and follows the PasswordHash API.

It supports a fixed-length salt, and a variable number of rounds.

The using() method accepts the following optional keywords:

Parameters

• salt (str) – Optional salt string. If not specified, one will be autogenerated (this is
recommended). If specified, it must be 4 characters, drawn from the regexp range [./
0-9A-Za-z].

• rounds (int) – Optional number of rounds to use. Defaults to 5001, must be between 1
and 16777215, inclusive.

• relaxed (bool) – By default, providing an invalid value for one of the other keywords
will result in a ValueError. If relaxed=True, and the error can be corrected, a
PasslibHashWarning will be issued instead. Correctable errors include rounds that
are too small or too large, and salt strings that are too long.

New in version 1.6.

Changed in version 1.6: hash() will now issue a warning if an even number of rounds is used (see Security
Issues regarding weak DES keys).

Note: This class will use the first available of two possible backends:

• stdlib crypt(), if the host OS supports BSDi-Crypt (primarily BSD-derived systems).

• a pure Python implementation of BSDi-Crypt built into Passlib.

You can see which backend is in use by calling the get_backend() method.

Format

An example hash (of the string password) is _EQ0.jzhSVeUyoSqLupI. A bsdi_crypt hash string consists of a
20 character string of the form _roundssaltchecksum. All characters except the underscore prefix are drawn
from [./0-9A-Za-z].

• _ - the underscore is used to distinguish this scheme from others, such as des-crypt.

• rounds is the number of rounds, stored as a 4 character hash64-encoded 24-bit integer (EQ0. in the exam-
ple).

• salt is the salt, stored as as a 4 character hash64-encoded 24-bit integer (jzhS in the example).

• checksum is the checksum, stored as an 11 character hash64-encoded 64-bit integer (VeUyoSqLupI in the
example).

A bsdi_crypt configuration string is also accepted by this module; and has the same format as the hash string, but with
the checksum portion omitted.

3.7. passlib.hash - Password Hashing Schemes 95

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError

Passlib Documentation, Release 1.8.0.dev0

Algorithm

The checksum is formed by a modified version of the DES cipher in encrypt mode:

1. Given a password string, a salt string, and rounds string.

2. The 4 character rounds string is decoded to a 24-bit integer rounds value; The rounds string uses little-endian
hash64 encoding.

3. The 4 character salt string is decoded to a 24-bit integer salt value; The salt string uses little-endian hash64
encoding.

4. The password is NULL-padded on the end to the smallest non-zero multiple of 8 bytes.

5. The lower 7 bits of the first 8 bytes of the password are used to form a 56-bit integer; with the first byte providing
the most significant 7 bits, and the 8th byte providing the least significant 7 bits. This is the DES key.

6. For each additional block of 8 bytes in the padded password:

a. The current DES key is encrypted using a single round of normal DES, with itself as the input block.

b. Step 5 is repeated for the current 8-byte block, and xored against the existing DES key.

7. Repeated rounds of (modified) DES encryption are performed; starting with a null input block, and using the
56-bit integer from step 5/6 as the DES key.

The salt is used to to mutate the normal DES encrypt operation by swapping bits i and i+24 in the DES E-Box
output if and only if bit i is set in the salt value.

The number of rounds is controlled by the value decoded in step 2.

8. The 64-bit result of the last round of step 7 is then lsb-padded with 2 zero bits.

9. The resulting 66-bit integer is encoded in big-endian order using the hash64-big format.

Security Issues

BSDi Crypt should not be considered sufficiently secure, for a number of reasons:

• Its use of the DES stream cipher, which is vulnerable to practical pre-image attacks, and considered broken, as
well as having too-small key and block sizes.

• The 24-bit salt is too small to defeat rainbow-table attacks (most modern algorithms provide at least a 48-bit
salt).

• The fact that it only uses the lower 7 bits of each byte of the password restricts the keyspace which needs to be
searched.

• Additionally, even rounds values are slightly weaker still, as they may reveal the hash used one of the weak
DES keys3. This information could theoretically allow an attacker to perform a brute-force attack on a reduced
keyspace and against only 1-2 rounds of DES. (This issue is mitigated by the fact that few passwords are both
valid and result in a weak key).

This algorithm is none-the-less stronger than des_crypt itself, since it supports variable rounds, a larger salt size,
and uses all the bytes of the password.

3 DES weak keys - https://en.wikipedia.org/wiki/Weak_key#Weak_keys_in_DES

96 Chapter 3. API Reference

https://en.wikipedia.org/wiki/Weak_key#Weak_keys_in_DES

Passlib Documentation, Release 1.8.0.dev0

Deviations

This implementation of bsdi-crypt differs from others in one way:

• Unicode Policy:

The original bsdi-crypt algorithm was designed for 7-bit us-ascii encoding only (as evidenced by the fact
that it discards the 8th bit of all password bytes).

In order to provide support for unicode strings, Passlib will encode unicode passwords using utf-8 before
running them through bsdi-crypt. If a different encoding is desired by an application, the password should be
encoded before handing it to Passlib.

passlib.hash.bigcrypt - BigCrypt

Danger: This algorithm is dangerously insecure by modern standards. It is trivially broken, and should not
be used if at all possible. For new code, see the list of recommended hashes.

This class implements BigCrypt (a modified version of DES-Crypt) commonly found on HP-UX, Digital Unix, and
OSF/1. The main difference between it and des_crypt is that BigCrypt uses all the characters of a password, not
just the first 8, and has a variable length hash.

See also:

password hash usage – for examples of how to use this class via the common hash interface.

Interface

class passlib.hash.bigcrypt
This class implements the BigCrypt password hash, and follows the PasswordHash API.

It supports a fixed-length salt.

The using() method accepts the following optional keywords:

Parameters

• salt (str) – Optional salt string. If not specified, one will be autogenerated (this is
recommended). If specified, it must be 22 characters, drawn from the regexp range [./
0-9A-Za-z].

• relaxed (bool) – By default, providing an invalid value for one of the other keywords
will result in a ValueError. If relaxed=True, and the error can be corrected, a
PasslibHashWarning will be issued instead. Correctable errors include salt strings
that are too long.

New in version 1.6.

Format

An example hash (of the string passphrase) is S/8NbAAlzbYO66hAa9XZyWy2. A bigcrypt hash string has the
format saltchecksum_1checksum_2...checksum_n for some integer n>0, where:

• salt is the salt, stored as a 2 character hash64-encoded 12-bit integer (S/ in the example).

3.7. passlib.hash - Password Hashing Schemes 97

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError

Passlib Documentation, Release 1.8.0.dev0

• each checksum_i is a separate checksum, stored as an 11 character hash64-big-encoded 64-bit integer
(8NbAAlzbYO6 and 6hAa9XZyWy2 in the example).

• the integer n (the number of checksums) is determined by the formula n=min(1, (len(secret)+7)//
8).

Note: This hash format lacks any magic prefix that can be used to unambiguously identify it. Out of context, certain
bigcrypt hashes may be confused with that of two other algorithms:

• des_crypt - BigCrypt hashes of passwords with < 8 characters are exactly the same as the Des-Crypt hash of
the same password.

• crypt16 - BigCrypt hashes of passwords with 9 to 16 characters have the same size and character set as
Crypt-16 hashes; though the actual algorithms are different.

Algorithm

The bigcrypt algorithm is designed to re-use the original des-crypt algorithm:

1. Given a password string and a salt string.

2. The password is NULL padded at the end to the smallest non-zero multiple of 8 bytes.

3. The lower 7 bits of the first 8 characters of the password are used to form a 56-bit integer; with the first character
providing the most significant 7 bits, and the 8th character providing the least significant 7 bits.

4. The 2 character salt string is decoded to a 12-bit integer salt value; The salt string uses little-endian hash64
encoding.

5. 25 repeated rounds of modified DES encryption are performed; starting with a null input block, and using the
56-bit integer from step 3 as the DES key.

The salt is used to to mutate the normal DES encrypt operation by swapping bits i and i+24 in the DES E-Box
output if and only if bit i is set in the salt value.

6. The 64-bit result of the last round of step 5 is then lsb-padded with 2 zero bits.

7. The resulting 66-bit integer is encoded in big-endian order using the hash64-big format. This forms the first
checksum segment.

8. For each additional block of 8 bytes in the padded password (from step 2), an additional checksum is generated
by repeating steps 3..7, with the following changes:

a. Step 3 uses the specified 8 bytes of the password, instead of the first 8 bytes.

b. Step 4 uses the first two characters from the previous checksum as the salt for the next checksum.

9. The final checksum string is the concatenation of the checksum segments generated from steps 7 and 8, in order.

Note: Because of the chained structure, bigcrypt has the property that the first 13 characters of any bigcrypt hash
form a valid des_crypt hash of the same password; and bigcrypt hashes of any passwords less than 9 characters
will be identical to des-crypt.

Security Issues

BigCrypt is dangerously flawed:

98 Chapter 3. API Reference

Passlib Documentation, Release 1.8.0.dev0

• It suffers from all the flaws of des_crypt.

• Since each checksum component in its hash is essentially a separate des-crypt checksum, they can be attacked
in parallel.

• It reveals information about the length of the encoded password (to within 8 characters), further reducing the
keyspace that needs to be searched for each of the individual segments.

• The last checksum typically contains only a few characters of the passphrase, and once cracked, can be used to
narrow the overall keyspace.

Deviations

This implementation of bigcrypt differs from others in two ways:

• Maximum Password Size:

This implementation currently accepts arbitrarily large passwords, producing arbitrarily large hashes. Other
implementation have various limits on maximum password length (commonly, 128 chars), and discard the
remaining part of the password.

Thus, while Passlib should be able to verify all existing bigcrypt hashes, other systems may require hashes
generated by Passlib to be truncated to their specific maximum length.

• Unicode Policy:

The original bigcrypt algorithm was designed for 7-bit us-ascii encoding only (as evidenced by the fact that
it discards the 8th bit of all password bytes).

In order to provide support for unicode strings, Passlib will encode unicode passwords using utf-8 before
running them through bigcrypt. If a different encoding is desired by an application, the password should be
encoded before handing it to Passlib.

passlib.hash.crypt16 - Crypt16

Danger: This algorithm is dangerously insecure by modern standards. It is trivially broken, and should not
be used if at all possible. For new code, see the list of recommended hashes.

This class implements the Crypt16 password hash, commonly found on Ultrix and Tru64. It’s a minor modification of
des_crypt, which allows passwords of up to 16 characters.

See also:

password hash usage – for examples of how to use this class via the common hash interface.

Interface

class passlib.hash.crypt16
This class implements the crypt16 password hash, and follows the PasswordHash API.

It supports a fixed-length salt.

The using() method accepts the following optional keywords:

Parameters

3.7. passlib.hash - Password Hashing Schemes 99

Passlib Documentation, Release 1.8.0.dev0

• salt (str) – Optional salt string. If not specified, one will be autogenerated (this is
recommended). If specified, it must be 2 characters, drawn from the regexp range [./
0-9A-Za-z].

• truncate_error (bool) – By default, crypt16 will silently truncate passwords
larger than 16 bytes. Setting truncate_error=True will cause hash() to raise a
PasswordTruncateError instead.

New in version 1.7.

• relaxed (bool) – By default, providing an invalid value for one of the other keywords
will result in a ValueError. If relaxed=True, and the error can be corrected, a
PasslibHashWarning will be issued instead. Correctable errors include salt strings
that are too long.

New in version 1.6.

Format

An example hash (of the string passphrase) is aaX/UmCcBrceQ0kQGGWKTbuE. A crypt16 hash string has the
format saltchecksum_1checksum_2, where:

• salt is the salt, stored as a 2 character hash64-encoded 12-bit integer (aa in the example).

• each checksum_i is a separate checksum, stored as an 11 character hash64-big-encoded 64-bit integer
(X/UmCcBrceQ and 0kQGGWKTbuE in the example).

Note: This hash is frequently confused with the bigcrypt hash algorithm, as it has the same size and uses the same
character set as a bigcrypt hash of a password with 9 to 16 characters; though the actual algorithms are different.

Algorithm

The crypt16 algorithm uses a weakened version of the des-crypt algorithm:

1. Given a password string and a salt string.

2. The 2 character salt string is decoded to a 12-bit integer salt value; The salt string uses little-endian hash64
encoding.

3. If the password is larger than 16 bytes, the end is truncated to 16 bytes. If the password is smaller than 16 bytes,
the end is NULL padded to 16 bytes.

4. The lower 7 bits of the first 8 characters of the password are used to form a 56-bit integer; with the first character
providing the most significant 7 bits, and the 8th character providing the least significant 7 bits.

5. 20 repeated rounds of modified DES encryption are performed; starting with a null input block, and using the
56-bit integer from step 4 as the DES key.

The salt value from step 2 is used to to mutate the normal DES encrypt operation by swapping bits i and i+24
in the DES E-Box output if and only if bit i is set in the salt value.

6. The 64-bit result of the last round of step 5 is then lsb-padded with 2 zero bits.

7. The resulting 66-bit integer is encoded in big-endian order using the hash64-big format. This is the first
checksum segment.

8. The second checksum segment is created by repeating steps 4..7 using the second 8 bytes of the padding pass-
word (from step 3). The only difference is that step 5 uses only 5 rounds.

100 Chapter 3. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError

Passlib Documentation, Release 1.8.0.dev0

9. The final checksum string is the concatenation of the two checksum segments, in order.

Security Issues

Crypt16 is dangerously flawed:

• It suffers from all the flaws of des_crypt.

• Compared to des-crypt, its smaller number of rounds makes it even more vulnerable to brute-force attacks.

• For a given salt, passwords under 9 characters all have the same 2nd checksum. Given the 12-bit salt size, all
such 2nd checksums can be easily pre-computed; making an attack easier, and giving away information about
password size.

• Since both checksums use the same salt, they can be attacked at once (by doing 5 rounds, checking the result
against checksum 2, doing 15 rounds more, and checking the result against checksum 1).

Deviations

This implementation of crypt16 deviates from public documentation of the format in one way:

• Unicode Policy:

The original crypt16 algorithm was designed for 7-bit us-ascii encoding only (as evidenced by the fact that
it discards the 8th bit of all password bytes).

In order to provide support for unicode strings, Passlib will encode unicode passwords using utf-8 before
running them through crypt16. If a different encoding is desired by an application, the password should be
encoded before handing it to Passlib.

3.7.3 Other “Modular Crypt” Hashes

The modular crypt format is a loose standard for password hash strings which started life under the Unix operating
system, and is used by many of the Unix hashes (above). However, it’s it’s basic $scheme$hash format has also
been adopted by a number of application-specific hash algorithms:

3.7.3.1 Active Hashes

While most of these schemes are generally application-specific, and are not natively supported by any Unix OS, they
can be used compatibly along side other modular crypt format hashes:

passlib.hash.argon2 - Argon2

New in version 1.7.

This hash provides support for the Argon21 password hash. Argon2(i) is a state of the art memory-hard password
hash, and the winner of the 2013 Password Hashing Competition2. It has seen active development and analysis in
subsequent years, and while young, and is intended to replace pbkdf2_sha256, bcrypt, and scrypt.

It is one of the four hashes Passlib recommends for new applications. This class can be used directly as follows:
1 the Argon2 homepage - https://github.com/P-H-C/phc-winner-argon2
2 2012 Password Hashing Competition - https://password-hashing.net/

3.7. passlib.hash - Password Hashing Schemes 101

https://github.com/P-H-C/phc-winner-argon2
https://password-hashing.net/

Passlib Documentation, Release 1.8.0.dev0

>>> from passlib.hash import argon2

>>> # generate new salt, hash password
>>> h = argon2.hash("password")
>>> h
'$argon2i$v=19$m=512,t=2,p=2$aI2R0hpDyLm3ltLa+1/rvQ$LqPKjd6n8yniKtAithoR7A'

>>> # the same, but with an explicit number of rounds
>>> argon2.using(rounds=4).hash("password")
'$argon2i$v=19$m=512,t=4,p=2$eM+ZMyYkpDRGaI3xXmuNcQ$c5DeJg3eb5dskVt1mDdxfw'

>>> # verify password
>>> argon2.verify("password", h)
True
>>> argon2.verify("wrong", h)
False

See also:

the generic PasswordHash usage examples

Interface

class passlib.hash.argon2
This class implements the Argon2 password hash1, and follows the PasswordHash API.

Argon2 supports a variable-length salt, and variable time & memory cost, and a number of other configurable
parameters.

The replace() method accepts the following optional keywords:

Parameters

• type (str) – Specify the type of argon2 hash to generate. Can be one of “ID”, “I”, “D”.

This defaults to “ID” if supported by the backend, otherwise “I”.

• salt (str) – Optional salt string. If specified, the length must be between 0-1024 bytes.
If not specified, one will be auto-generated (this is recommended).

• salt_size (int) – Optional number of bytes to use when autogenerating new salts.

• rounds (int) – Optional number of rounds to use. This corresponds linearly to the amount
of time hashing will take.

• time_cost (int) – An alias for rounds, for compatibility with underlying argon2 library.

• memory_cost (int) – Defines the memory usage in kibibytes. This corresponds linearly
to the amount of memory hashing will take.

• parallelism (int) – Defines the parallelization factor. NOTE: this will affect the re-
sulting hash value.

• digest_size (int) – Length of the digest in bytes.

• max_threads (int) – Maximum number of threads that will be used. -1 means unlim-
ited; otherwise hashing will use min(parallelism, max_threads) threads.

Note: This option is currently only honored by the argon2pure backend.

102 Chapter 3. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Passlib Documentation, Release 1.8.0.dev0

• relaxed (bool) – By default, providing an invalid value for one of the other keywords
will result in a ValueError. If relaxed=True, and the error can be corrected, a
PasslibHashWarning will be issued instead. Correctable errors include rounds that
are too small or too large, and salt strings that are too long.

Changed in version 1.7.2: Added the “type” keyword, and support for type “D” and “ID” hashes. (Prior versions
could verify type “D” hashes, but not generate them).

Todo:

• Support configurable threading limits.

Argon2 Backends

This class will use the first available of two possible backends:

1. argon2_cffi, if installed. (this is the recommended option).

2. argon2pure, if installed.

If no backends are available, hash() and verify()will throw MissingBackendError when they are invoked.
You can check which backend is in use by calling argon2.get_backend().

Format & Algorithm

The Argon2 hash format is defined by the argon2 reference implementation. It’s compatible with the PHC Format and
Modular Crypt Format, and uses $argon2i$, $argon2d$, or $argon2id$ as the identifying prefixes for all its
strings. An example hash (of password) is:

$argon2i$v=19$m=512,t=3,p=2$c29tZXNhbHQ$SqlVijFGiPG+935vDSGEsA

This string has the format $argon2X$v=V$m=M,t=T,p=P$salt$digest, where:

• X is either i, d, or id; depending on the argon2 variant (i in the example).

• V is an integer representing the argon2 revision. the value (when rendered into hexidecimal) matches the argon2
version (in the example, v=19 corresponds to 0x13, or Argon2 v1.3).

• M is an integer representing the variable memory cost, in kibibytes (512kib in the example).

• T is an integer representing the variable time cost, in linear iterations. (3 in the example).

• P is a parallelization parameter, which controls how much of the hash calculation is parallelization (2 in the
example).

• salt - this is the base64-encoded version of the raw salt bytes passed into the Argon2 function (c29tZXNhbHQ
in the example).

• digest - this is the base64-encoded version of the raw derived key bytes returned from the Argon2 function.
Argon2 supports a variable checksum size, though the hashes in passlib will typically be 16 bytes, resulting in a
22 byte digest (SqlVijFGiPG+935vDSGEsA in the example).

All integer values are encoded uses ascii decimal, with no leading zeros. All byte strings are encoded using the
standard base64 encoding, but without any trailing padding (“=”) chars.

Note: The v=version$ segment was added in Argon2 v1.3; older version Argon2 v1.0 hashes may not include
this portion.

3.7. passlib.hash - Password Hashing Schemes 103

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://pypi.python.org/pypi/argon2_cffi
https://pypi.python.org/pypi/argon2pure

Passlib Documentation, Release 1.8.0.dev0

The Argon2 specification also supports an optional ,data=data suffix following p=parallelism; but this is not
consistently or fully supported.

The algorithm used by all of these schemes is deliberately identical and simple: The password is encoded into UTF-8
if not already encoded, and handed off to the Argon2 function. A specified number of bytes (16 byte default in passlib)
returned result are encoded as the checksum.

See https://github.com/P-H-C/phc-winner-argon2 for the canonical description of the Argon2 hash.

Security Issues

Argon2 is relatively new compared to other password hash algorithms, having started life in 2013, and thus may still
harbor some undiscovered issues. That said, it’s one of very few which were designed explicitly with password hashing
in mind; and draws strongly on the lessons of the algorithms before it. As of the release of Passlib 1.7, it has no known
major security issues.

Deviations

• This implementation currently encodes all unicode passwords using UTF-8 before hashing, other implementa-
tions may vary, or offer a configurable encoding; though UTF-8 is assumed to be the default.

passlib.hash.bcrypt_sha256 - BCrypt+SHA256

New in version 1.6.2.

BCrypt was developed to replace md5_crypt for BSD systems. It uses a modified version of the Blowfish stream ci-
pher. It does, however, truncate passwords to 72 bytes, and some other minor quirks (see BCrypt Password Truncation
for details). This class works around that issue by first running the password through HMAC-SHA2-256. This class
can be used directly as follows:

>>> from passlib.hash import bcrypt_sha256

>>> # generate new salt, hash password
>>> h = bcrypt_sha256.hash("password")
>>> h
'$bcrypt-sha256$v=2,t=2b,r=12$n79VH.0Q2TMWmt3Oqt9uku$Kq4Noyk3094Y2QlB8NdRT8SvGiI4ft2'

>>> # the same, but with an explicit number of rounds
>>> bcrypt_sha256.using(rounds=13).hash("password")
'$bcrypt-sha256$v=2,t=2b,r=13$AmytCA45b12VeVg0YdDT3.$IZTbbJKgJlD5IJoCWhuDUqYjnJwNPlO'

>>> # verify password
>>> bcrypt_sha256.verify("password", h)
True
>>> bcrypt_sha256.verify("wrong", h)
False

Note: It is strongly recommended that you install bcrypt when using this hash. See passlib.hash.bcrypt - BCrypt for
more details.

104 Chapter 3. API Reference

https://github.com/P-H-C/phc-winner-argon2
https://pypi.python.org/pypi/bcrypt

Passlib Documentation, Release 1.8.0.dev0

Interface

class passlib.hash.bcrypt_sha256
This class implements a composition of BCrypt + HMAC_SHA256, and follows the PasswordHash API.

It supports a fixed-length salt, and a variable number of rounds.

The hash() and genconfig() methods accept all the same optional keywords as the base bcrypt hash.

New in version 1.6.2.

Changed in version 1.7: Now defaults to "2b" bcrypt variant; though supports older hashes generated using the
"2a" bcrypt variant.

Changed in version 1.7.3: For increased security, updated to use HMAC-SHA256 instead of plain SHA256.
Now only supports the "2b" bcrypt variant. Hash format updated to “v=2”.

Format

Bcrypt-SHA256 is compatible with the Modular Crypt Format, and uses $bcrypt-sha256$ as the identifying
prefix for all it’s strings. An example hash (of password) is:

$bcrypt-sha256$v=2,t=2b,r=12$n79VH.0Q2TMWmt3Oqt9uku$Kq4Noyk3094Y2QlB8NdRT8SvGiI4ft2

Version 1 of this format had the format $bcrypt-sha256$type,rounds$salt$digest. Passlib 1.7.3 intro-
duced version 2 of this format, which changed the algorithm slightly (see below), and adjusted the format to indicate
a version: $bcrypt-sha256$v=2,t=type,r=rounds$salt$digest, where:

• type is the BCrypt variant in use (always 2b under version 2; though 2a was allowed under version 1).

• rounds is a cost parameter, encoded as decimal integer, which determines the number of iterations used via
iterations=2**rounds (rounds is 12 in the example).

• salt is a 22 character salt string, using the characters in the regexp range [./A-Za-z0-9] (n79VH.
0Q2TMWmt3Oqt9uku in the example).

• digest is a 31 character digest, using the same characters as the salt
(Kq4Noyk3094Y2QlB8NdRT8SvGiI4ft2 in the example).

Algorithm

The algorithm this hash uses is as follows:

• first the password is encoded to UTF-8 if not already encoded.

• the next step is to hash the password before handing it off to bcrypt:

– Under version 2 of this algorithm (the default as of passlib 1.7.3), the password is run through
HMAC-SHA2-256, with the HMAC key set to the bcrypt salt (encoded as a 22 character ascii
salt string).

– Under the older version 1 of this algorithm, the password was instead run through plain SHA2-
256.

In either case, this generates a 32 byte digest.

• this hash is then encoded using base64, resulting in a 44-byte result (including the trailing padding =). For the
example "password" and the salt "n79VH.0Q2TMWmt3Oqt9uku", the output from this stage would be
b"7CwRr5rxo2JZcVmSDAi/2JPTkvkAdNy20Cz2LwYC0fw=" (for version 2).

3.7. passlib.hash - Password Hashing Schemes 105

Passlib Documentation, Release 1.8.0.dev0

• this base64 string is then passed on to the underlying bcrypt algorithm as the new password to be hashed. See
passlib.hash.bcrypt - BCrypt for details on it’s operation. For the example in the prior line, the resulting bcrypt
digest component would be "Kq4Noyk3094Y2QlB8NdRT8SvGiI4ft2".

passlib.hash.phpass - PHPass’ Portable Hash

This algorithm is used primarily by PHP software which uses PHPass1, a PHP library similar to Passlib. The PHPass
Portable Hash is a custom password hash used by PHPass as a fallback when none of its other hashes are available.
Due to its reliance on MD5, and the simplistic implementation, other hash algorithms should be used if possible.

See also:

password hash usage – for examples of how to use this class via the common hash interface.

Interface

class passlib.hash.phpass
This class implements the PHPass Portable Hash, and follows the PasswordHash API.

It supports a fixed-length salt, and a variable number of rounds.

The using() method accepts the following optional keywords:

Parameters

• salt (str) – Optional salt string. If not specified, one will be autogenerated (this is
recommended). If specified, it must be 8 characters, drawn from the regexp range [./
0-9A-Za-z].

• rounds (int) – Optional number of rounds to use. Defaults to 19, must be between 7
and 30, inclusive. This value is logarithmic, the actual number of iterations used will be
2**rounds.

• ident (str) – phpBB3 uses H instead of P for its identifier, this may be set to H in order
to generate phpBB3 compatible hashes. it defaults to P.

• relaxed (bool) – By default, providing an invalid value for one of the other keywords
will result in a ValueError. If relaxed=True, and the error can be corrected, a
PasslibHashWarning will be issued instead. Correctable errors include rounds that
are too small or too large, and salt strings that are too long.

New in version 1.6.

Format

An example hash (of password) is P8ohUJ.1sdFw09/bMaAQPTGDNi2BIUt1. A phpass portable hash
string has the format Proundssaltchecksum, where:

• P is the prefix used to identify phpass hashes, following the Modular Crypt Format.

• rounds is a single character encoding a 6-bit integer representing the number of rounds used. This is logarith-
mic, the real number of rounds is 2**rounds. (in the example, rounds is encoded as 8, or 2**13 iterations).

• salt is eight characters drawn from [./0-9A-Za-z], providing a 48-bit salt (ohUJ.1sd in the example).

• checksum is 22 characters drawn from the same set, encoding the 128-bit checksum (Fw09/
bMaAQPTGDNi2BIUt1 in the example).

1 PHPass homepage, which describes the Portable Hash algorithm - http://www.openwall.com/phpass/

106 Chapter 3. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
http://www.openwall.com/phpass/

Passlib Documentation, Release 1.8.0.dev0

Note: Note that phpBB3 databases uses the alternate prefix H, both prefixes are recognized by this implementation,
and the checksums are the same.

Algorithm

PHPass uses a straightforward algorithm to calculate the checksum:

1. an initial result is generated from the MD5 digest of the salt string + the secret.

2. for 2**rounds iterations, a new result is created from the MD5 digest of the last result + the password.

3. the last result is then encoded according to the format described above.

Deviations

This implementation of phpass differs from the specification in one way:

• Unicode Policy:

The underlying algorithm takes in a password specified as a series of non-null bytes, and does not specify what
encoding should be used; though a us-ascii compatible encoding is implied by nearly all known reference
hashes.

In order to provide support for unicode strings, Passlib will encode unicode passwords using utf-8 before
running them through phpass. If a different encoding is desired by an application, the password should be
encoded before handing it to Passlib.

passlib.hash.pbkdf2_digest - Generic PBKDF2 Hashes

Passlib provides three custom hash schemes based on the PBKDF21 algorithm which are compatible with the modular
crypt format:

• pbkdf2_sha1

• pbkdf2_sha256

• pbkdf2_sha512

Security-wise, PBKDF2 is currently one of the leading key derivation functions, and has no known security issues.
Though the original PBKDF2 specification uses the SHA-1 message digest, it is not vulnerable to any of the known
weaknesses of SHA-12, and can be safely used. However, for those still concerned, SHA-256 and SHA-512 versions
are offered as well. PBKDF2-SHA512 is one of the four hashes Passlib recommends for new applications.

All of these classes can be used directly as follows:

>>> from passlib.hash import pbkdf2_sha256

>>> # generate new salt, hash password
>>> hash = pbkdf2_sha256.hash("password")
>>> hash
'$pbkdf2-sha256$6400$0ZrzXitFSGltTQnBWOsdAw
→˓$Y11AchqV4b0sUisdZd0Xr97KWoymNE0LNNrnEgY4H9M'

(continues on next page)

1 The specification for the PBKDF2 algorithm - http://tools.ietf.org/html/rfc2898#section-5.2, part of RFC 2898.
2 While SHA1 has fallen to collision attacks, HMAC-SHA1 as used by PBKDF2 is still considered secure - http://www.schneier.com/blog/

archives/2005/02/sha1_broken.html.

3.7. passlib.hash - Password Hashing Schemes 107

http://tools.ietf.org/html/rfc2898#section-5.2
https://tools.ietf.org/html/rfc2898.html
http://www.schneier.com/blog/archives/2005/02/sha1_broken.html
http://www.schneier.com/blog/archives/2005/02/sha1_broken.html

Passlib Documentation, Release 1.8.0.dev0

(continued from previous page)

>>> # same, but with an explicit number of rounds and salt length
>>> pbkdf2_sha256.using(rounds=8000, salt_size=10).hash("password")
'$pbkdf2-sha256$8000$XAuBMIYQQogxRg$tRRlz8hYn63B9LYiCd6PRo6FMiunY9ozmMMI3srxeRE'

>>> # verify the password
>>> pbkdf2_sha256.verify("password", hash)
True
>>> pbkdf2_sha256.verify("wrong", hash)
False

See also:

• password hash usage – for more usage examples

• ldap_pbkdf2_{digest} – alternate LDAP-compatible versions of these hashes.

Interface

class passlib.hash.pbkdf2_sha256
This class implements a generic PBKDF2-HMAC-SHA256-based password hash, and follows the Password-
Hash API.

It supports a variable-length salt, and a variable number of rounds.

The using() method accepts the following optional keywords:

Parameters

• salt (bytes) – Optional salt bytes. If specified, the length must be between 0-1024 bytes.
If not specified, a 16 byte salt will be autogenerated (this is recommended).

• salt_size (int) – Optional number of bytes to use when autogenerating new salts.
Defaults to 16 bytes, but can be any value between 0 and 1024.

• rounds (int) – Optional number of rounds to use. Defaults to 29000, but must be within
range(1,1<<32).

• relaxed (bool) – By default, providing an invalid value for one of the other keywords
will result in a ValueError. If relaxed=True, and the error can be corrected, a
PasslibHashWarning will be issued instead. Correctable errors include rounds that
are too small or too large, and salt strings that are too long.

New in version 1.6.

class passlib.hash.pbkdf2_sha512
except for the choice of message digest, this class is the same as pbkdf2_sha256.

class passlib.hash.pbkdf2_sha1
except for the choice of message digest, this class is the same as pbkdf2_sha256.

Format & Algorithm

An example pbkdf2_sha256 hash (of password):

$pbkdf2-sha256$6400$.6UI/S.nXIk8jcbdHx3Fhg$98jZicV16ODfEsEZeYPGHU3kbrUrvUEXOPimVSQDD44

108 Chapter 3. API Reference

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError

Passlib Documentation, Release 1.8.0.dev0

All of the pbkdf2 hashes defined by passlib follow the same format,
$pbkdf2-digest$rounds$salt$checksum.

• $pbkdf2-digest$ is used as the Modular Crypt Format identifier ($pbkdf2-sha256$ in the example).

• digest - this specifies the particular cryptographic hash used in conjunction with HMAC to form PBKDF2’s
pseudorandom function for that particular hash (sha256 in the example).

• rounds - the number of iterations that should be performed. this is encoded as a positive decimal number with
no zero-padding (6400 in the example).

• salt - this is the adapted base64 encoding of the raw salt bytes passed into the PBKDF2 function.

• checksum - this is the adapted base64 encoding of the raw derived key bytes returned from the
PBKDF2 function. Each scheme uses the digest size of its specific hash algorithm (digest) as the size of
the raw derived key. This is enlarged by approximately 4/3 by the base64 encoding, resulting in a checksum size
of 27, 43, and 86 for each of the respective algorithms listed above.

The algorithm used by all of these schemes is deliberately identical and simple: The password is encoded into UTF-8
if not already encoded, and run through pbkdf2_hmac() along with the decoded salt, the number of rounds, and a
prf built from HMAC + the respective message digest. The result is then encoded using ab64_encode().

passlib.hash.scram - SCRAM Hash

New in version 1.6.

SCRAM is a password-based challenge response protocol defined by RFC 5802. While Passlib does not provide an
implementation of SCRAM, applications which use SCRAM on the server side frequently need a way to store user
passwords in a secure format that can be used to authenticate users over SCRAM.

To accomplish this, Passlib provides the following Modular Crypt Format-compatible password hash scheme which
uses the $scram$ identifier. This format encodes a salt, rounds settings, and one or more pbkdf2_hmac() di-
gests. . . one digest for each of the hash algorithms the server wishes to support over SCRAM.

Since this format is PBKDF2-based, it has equivalent security to Passlib’s other pbkdf2 hashes, and can be used to
authenticate users using either the normal PasswordHash API or the SCRAM-specific class methods documented
below.

Note: If you aren’t working with the SCRAM protocol, you probably don’t need to use this hash format.

Usage

This class can be used like any other Passlib hash, as follows:

>>> from passlib.hash import scram

>>> # generate new salt, hash password against default list of algorithms
>>> hash = scram.hash("password")
>>> hash
'$scram$6400$.Z/znnNOKWUsBaCU$sha-1=cRseQyJpnuPGn3e6d6u6JdJWk.0,sha-256=5G
cjEbRaUIIci1r6NAMdI9OPZbxl9S5CFR6la9CHXYc,sha-512=.DHbIm82ajXbFR196Y.9Ttbs
gzvGjbMeuWCtKve8TPjRMNoZK9EGyHQ6y0lW9OtWdHZrDZbBUhB9ou./VI2mlw'

>>> # same, but with an explicit number of rounds
>>> scram.using(rounds=8000).hash("password")

(continues on next page)

3.7. passlib.hash - Password Hashing Schemes 109

https://tools.ietf.org/html/rfc5802.html

Passlib Documentation, Release 1.8.0.dev0

(continued from previous page)

'$scram$8000$Y0zp/R/DeO89h/De$sha-1=eE8dq1f1P1hZm21lfzsr3CMbiEA,sha-256=Nf
kaDFMzn/yHr/HTv7KEFZqaONo6psRu5LBBFLEbZ.o,sha-512=XnGG11X.J2VGSG1qTbkR3FVr
9j5JwsnV5Fd094uuC.GtVDE087m8e7rGoiVEgXnduL48B2fPsUD9grBjURjkiA'

>>> # verify password
>>> scram.verify("password", hash)
True
>>> scram.verify("secret", hash)
False

See the generic PasswordHash usage examples for more details on how to use the common hash interface.

Additionally, this class provides a number of useful methods for SCRAM-specific actions:

• You can override the default list of digests, and/or the number of iterations:

>>> hash = scram.using(rounds=1000, algs="sha-1,sha-256,md5").hash("password")
>>> hash
'$scram$1000$RsgZo7T2/l8rBUBI$md5=iKsH555d3ctn795Za4S7bQ,sha-1=dRcE2AUjALLF
tX5DstdLCXZ9Afw,sha-256=WYE/LF7OntriUUdFXIrYE19OY2yL0N5qsQmdPNFn7JE'

• Given a scram hash, you can use a single call to extract all the information the SCRAM needs to authenticate
against a specific mechanism:

>>> # this returns (salt_bytes, rounds, digest_bytes)
>>> scram.extract_digest_info(hash, "sha-1")
('F\xc8\x19\xa3\xb4\xf6\xfe_+\x05@H',
1000,
'u\x17\x04\xd8\x05#\x00\xb2\xc5\xb5~C\xb2\xd7K\tv}\x01\xfc')

• Given a scram hash, you can extract the list of digest algorithms it contains information for (sha-1 will always
be present):

>>> scram.extract_digest_algs(hash)
["md5", "sha-1", "sha-256"]

• This class also provides a standalone helper which can calculate the SaltedPassword portion of the SCRAM
protocol, taking care of the SASLPrep step as well:

>>> scram.derive_digest("password", b'\x01\x02\x03', 1000, "sha-1")
b'k\x086vg\xb3\xfciz\xb4\xb4\xe2JRZ\xaet\xe4`\xe7'

Interface

Note: This hash format is new in Passlib 1.6, and its SCRAM-specific API may change in the next few releases,
depending on user feedback.

class passlib.hash.scram
This class provides a format for storing SCRAM passwords, and follows the PasswordHash API.

It supports a variable-length salt, and a variable number of rounds.

The using() method accepts the following optional keywords:

110 Chapter 3. API Reference

Passlib Documentation, Release 1.8.0.dev0

Parameters

• salt (bytes) – Optional salt bytes. If specified, the length must be between 0-1024 bytes.
If not specified, a 12 byte salt will be autogenerated (this is recommended).

• salt_size (int) – Optional number of bytes to use when autogenerating new salts.
Defaults to 12 bytes, but can be any value between 0 and 1024.

• rounds (int) – Optional number of rounds to use. Defaults to 100000, but must be within
range(1,1<<32).

• algs (list of strings) – Specify list of digest algorithms to use.

By default each scram hash will contain digests for SHA-1, SHA-256, and SHA-512. This
can be overridden by specify either be a list such as ["sha-1", "sha-256"], or a
comma-separated string such as "sha-1, sha-256". Names are case insensitive, and
may use hashlib or IANA hash names.

• relaxed (bool) – By default, providing an invalid value for one of the other keywords
will result in a ValueError. If relaxed=True, and the error can be corrected, a
PasslibHashWarning will be issued instead. Correctable errors include rounds that
are too small or too large, and salt strings that are too long.

New in version 1.6.

In addition to the standard PasswordHash API methods, this class also provides the following methods for
manipulating Passlib scram hashes in ways useful for pluging into a SCRAM protocol stack:

classmethod extract_digest_info(hash, alg)
return (salt, rounds, digest) for specific hash algorithm.

Parameters

• hash (str) – scram hash stored for desired user

• alg (str) – Name of digest algorithm (e.g. "sha-1") requested by client.

This value is run through norm_hash_name(), so it is case-insensitive, and can be the
raw SCRAM mechanism name (e.g. "SCRAM-SHA-1"), the IANA name, or the hashlib
name.

Raises KeyError – If the hash does not contain an entry for the requested digest algorithm.

Returns A tuple containing (salt, rounds, digest), where digest matches the raw
bytes returned by SCRAM’s Hi() function for the stored password, the provided salt, and
the iteration count (rounds). salt and digest are both raw (unencoded) bytes.

classmethod extract_digest_algs(hash, format=’iana’)
Return names of all algorithms stored in a given hash.

Parameters

• hash (str) – The scram hash to parse

• format (str) – This changes the naming convention used by the returned algorithm
names. By default the names are IANA-compatible; possible values are "iana" or
"hashlib".

Returns Returns a list of digest algorithms; e.g. ["sha-1"]

classmethod derive_digest(password, salt, rounds, alg)
helper to create SaltedPassword digest for SCRAM.

This performs the step in the SCRAM protocol described as:

3.7. passlib.hash - Password Hashing Schemes 111

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
http://www.iana.org/assignments/hash-function-text-names
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Passlib Documentation, Release 1.8.0.dev0

SaltedPassword := Hi(Normalize(password), salt, i)

Parameters

• password (str or utf-8 bytes) – password to run through digest

• salt (bytes) – raw salt data

• rounds (int) – number of iterations.

• alg (str) – name of digest to use (e.g. "sha-1").

Returns raw bytes of SaltedPassword

Format & Algorithm

An example scram hash (of the string password) is:

$scram$6400$.Z/znnNOKWUsBaCU$sha-1=cRseQyJpnuPGn3e6d6u6JdJWk.0,sha-256=5G
cjEbRaUIIci1r6NAMdI9OPZbxl9S5CFR6la9CHXYc,sha-512=.DHbIm82ajXbFR196Y.9Ttb
sgzvGjbMeuWCtKve8TPjRMNoZK9EGyHQ6y0lW9OtWdHZrDZbBUhB9ou./VI2mlw

An scram hash string has the format $scram$rounds$salt$alg1=digest1,alg2=digest2,..., where:

• $scram$ is the prefix used to identify Passlib scram hashes, following the Modular Crypt Format

• rounds is the number of decimal rounds to use (6400 in the example), zero-padding not allowed. this value
must be in range(1, 2**32).

• salt is a base64 salt string (.Z/znnNOKWUsBaCU in the example), encoded using ab64_encode().

• alg is a lowercase IANA hash function name2, which should match the digest in the SCRAM mechanism
name.

• digest is a base64 digest for the specific algorithm, encoded using ab64_encode(). Digests for sha-1,
sha-256, and sha-512 are present in the example.

• There will always be one or more alg=digest pairs, separated by a comma. Per the SCRAM specification,
the algorithm sha-1 should always be present.

There is also an alternate format ($scram$rounds$salt$alg,...) which is used to represent a configuration
string that doesn’t contain any digests. An example would be:

$scram$6400$.Z/znnNOKWUsBaCU$sha-1,sha-256,sha-512

The algorithm used to calculate each digest is:

pbkdf2(salsprep(password).encode("utf-8"), salt, rounds, alg_digest_size, "hmac-"+alg)

. . . as laid out in the SCRAM specification1. All digests should verify against the same password, or the hash is
considered malformed.

Note: This format is similar in spirit to the LDAP storage format for SCRAM hashes, defined in RFC 5803, except
that it encodes everything into a single string, and does not have any storage requirements (outside of the ability to
store 512+ character ascii strings).

2 The official list of IANA-assigned hash function names - http://www.iana.org/assignments/hash-function-text-names
1 The SCRAM protocol is laid out in RFC 5802.

112 Chapter 3. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://tools.ietf.org/html/rfc5803.html
http://www.iana.org/assignments/hash-function-text-names
https://tools.ietf.org/html/rfc5802.html

Passlib Documentation, Release 1.8.0.dev0

Security

The security of this hash is only as strong as the weakest digest used by this hash. Since the SCRAM1 protocol requires
SHA1 always be supported, this will generally be the weakest link, since the other digests will generally be stronger
ones (e.g. SHA2-256).

None-the-less, since PBKDF2 is sufficiently collision-resistant on its own, any pre-image weaknesses found in SHA1
should be mitigated by the PBKDF2-HMAC-SHA1 wrapper; and should have no flaws outside of brute-force attacks
on PBKDF2-HMAC-SHA1.

passlib.hash.scrypt - SCrypt

New in version 1.7.

This is a custom hash scheme provided by Passlib which allows storing password hashes generated using the SCrypt1

key derivation function, and is designed as the of a new generation of “memory hard” functions.

Warning: Be careful when using this algorithm, as the memory and CPU requirements needed to achieve adequate
security are generally higher than acceptable for heavily used production systems2. This is because (unlike many
password hashes), increasing the rounds value of scrypt will increase the memory required as well as the time.

Unless you know what you’re doing, You probably want argon2 instead.

This class can be used directly as follows:

>>> from passlib.hash import scrypt

>>> # generate new salt, hash password
>>> h = scrypt.hash("password")
>>> h
'$scrypt$ln=16,r=8,p=1$aM15713r3Xsvxbi31lqr1Q
→˓$nFNh2CVHVjNldFVKDHDlm4CbdRSCdEBsjjJxD+iCs5E'

>>> # the same, but with an explicit number of rounds
>>> scrypt.using(rounds=8).hash("password")
'$scrypt$ln=8,r=8,p=1$WKs1xljLudd6z9kbY0wpJQ$yCR4iDZYDKv+iEJj6yHY0lv/epnfB6f/
→˓w1EbXrsJOuQ'

>>> # verify password
>>> scrypt.verify("password", h)
True
>>> scrypt.verify("wrong", h)
False

Note: It is strongly recommended that you install scrypt when using this hash.

See also:

the generic PasswordHash usage examples

1 the SCrypt KDF homepage - http://www.tarsnap.com/scrypt.html
2 posts discussing security implications of scrypt’s tying memory cost to calculation time - http://blog.ircmaxell.com/2014/

03/why-i-dont-recommend-scrypt.html, http://security.stackexchange.com/questions/26245/is-bcrypt-better-than-scrypt, http://security.
stackexchange.com/questions/4781/do-any-security-experts-recommend-bcrypt-for-password-storage

3.7. passlib.hash - Password Hashing Schemes 113

https://pypi.python.org/pypi/scrypt
http://www.tarsnap.com/scrypt.html
http://blog.ircmaxell.com/2014/03/why-i-dont-recommend-scrypt.html
http://blog.ircmaxell.com/2014/03/why-i-dont-recommend-scrypt.html
http://security.stackexchange.com/questions/26245/is-bcrypt-better-than-scrypt
http://security.stackexchange.com/questions/4781/do-any-security-experts-recommend-bcrypt-for-password-storage
http://security.stackexchange.com/questions/4781/do-any-security-experts-recommend-bcrypt-for-password-storage

Passlib Documentation, Release 1.8.0.dev0

Interface

class passlib.hash.scrypt
This class implements an SCrypt-based password1 hash, and follows the PasswordHash API.

It supports a variable-length salt, a variable number of rounds, as well as some custom tuning parameters unique
to scrypt (see below).

The using() method accepts the following optional keywords:

Parameters

• salt (str) – Optional salt string. If specified, the length must be between 0-1024 bytes.
If not specified, one will be auto-generated (this is recommended).

• salt_size (int) – Optional number of bytes to use when autogenerating new salts.
Defaults to 16 bytes, but can be any value between 0 and 1024.

• rounds (int) – Optional number of rounds to use. Defaults to 16, but must be within
range(1,32).

Warning: Unlike many hash algorithms, increasing the rounds value will increase both
the time and memory required to hash a password.

• block_size (int) – Optional block size to pass to scrypt hash function (the r parame-
ter). Useful for tuning scrypt to optimal performance for your CPU architecture. Defaults
to 8.

• parallelism (int) – Optional parallelism to pass to scrypt hash function (the p param-
eter). Defaults to 1.

• relaxed (bool) – By default, providing an invalid value for one of the other keywords
will result in a ValueError. If relaxed=True, and the error can be corrected, a
PasslibHashWarning will be issued instead. Correctable errors include rounds that
are too small or too large, and salt strings that are too long.

Note: The underlying scrypt hash function has a number of limitations on it’s parameter values, which forbids
certain combinations of settings. The requirements are:

• linear_rounds = 2**<some positive integer>

• linear_rounds < 2**(16 * block_size)

• block_size * parallelism <= 2**30-1

Todo: This class currently does not support configuring default values for block_size or parallelism
via a CryptContext configuration.

Scrypt Backends

This class will use the first available of two possible backends:

1. Python stdlib’s hashlib.scrypt() method (only present for Python 3.6+ and OpenSSL 1.1+)

2. The C-accelerated scrypt package, if installed.

114 Chapter 3. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/hashlib.html#hashlib.scrypt
https://pypi.python.org/pypi/scrypt

Passlib Documentation, Release 1.8.0.dev0

3. A pure-python implementation of SCrypt, built into Passlib.

Warning: If hashlib.scrypt() is not present on your system, it is strongly recommended to install the
external scrypt package. The pure-python backend is intended as a reference and last-resort implementation only;
it is 10-100x too slow to be usable in production at a secure rounds cost.

Changed in version 1.7.2: Added support for using stdlib’s hashlib.scrypt()

Format & Algorithm

This Scrypt hash format is compatible with the PHC Format and Modular Crypt Format, and uses $scrypt$ as the
identifying prefix for all its strings. An example hash (of password) is:

$scrypt$ln=16,r=8,p=1$aM15713r3Xsvxbi31lqr1Q$nFNh2CVHVjNldFVKDHDlm4CbdRSCdEBsjjJxD+iCs5E

This string has the format $scrypt$ln=logN,r=R,p=P$salt$checksum, where:

• logN is the exponent for calculating SCRYPT’s cost parameter (N), encoded as a decimal digit, (logN is 16 in
the example, corresponding to n = 2**16 = 65536).

• R is the value of SCRYPT’s block size parameter (r), encoded as a decimal digit, (r is 8 in the example).

• P is the value of SCRYPT’s parallel count parameter (p), encoded as a decimal digit, (p is 1 in the example).

• salt - this base64 encoded salt bytes passed into the SCRYPT function (aM15713r3Xsvxbi31lqr1Q in
the example).

• checksum - this is the base64 encoded derived key bytes returned from the SCRYPT func-
tion. This hash currently always uses 32 bytes, resulting in a 43-character checksum.
(nFNh2CVHVjNldFVKDHDlm4CbdRSCdEBsjjJxD+iCs5E in the example).

All byte strings are encoded using the standard base64 encoding, but without any trailing padding (“=”) chars. The
password is encoded into UTF-8 if not already encoded, and run throught the SCRYPT function; along with the salt,
and the values of n, r, and p. The first 32 bytes of the returned result are encoded as the checksum.

See http://www.tarsnap.com/scrypt.html for the canonical description of the scrypt kdf.

Security Issues

SCrypt is the first in a class of “memory-hard” key derivation functions. Initially, it looked very promising as a
replacement for BCrypt, PBKDF2, and SHA512-Crypt. However, the fact that it’s N parameter controls both time and
memory cost means the two cannot be varied completely independantly. This eventually proved to be problematic, as
N values required for even BCrypt levels of security resulting in memory requirements that were unacceptable on most
production systems.

See also:

argon2, a next generation memory-hard KDF designed as the successor to SCrypt.

3.7.3.2 Deprecated Hashes

The following are some additional application-specific hashes which are still occasionally seen, use the modular crypt
format, but are rarely used or weak enough that they have been deprecated:

3.7. passlib.hash - Password Hashing Schemes 115

https://docs.python.org/3/library/hashlib.html#hashlib.scrypt
https://docs.python.org/3/library/hashlib.html#hashlib.scrypt
http://www.tarsnap.com/scrypt.html
http://www.tarsnap.com/scrypt.html

Passlib Documentation, Release 1.8.0.dev0

passlib.hash.apr_md5_crypt - Apache’s MD5-Crypt variant

Danger: This algorithm is not considered secure by modern standards. It should only be used when verifying
existing hashes, or when interacting with applications that require this format. For new code, see the list of
recommended hashes.

This hash is a variation of md5_crypt, primarily used by the Apache webserver in htpasswd files. It contains only
minor changes to the MD5-Crypt algorithm, and should be considered just as weak as MD5-Crypt itself.

See also:

• password hash usage – for examples of how to use this class via the common hash interface.

• passlib.apache – routines for manipulating htpasswd files.

Interface

class passlib.hash.apr_md5_crypt
This class implements the Apr-MD5-Crypt password hash, and follows the PasswordHash API.

It supports a variable-length salt.

The using() method accepts the following optional keywords:

Parameters

• salt (str) – Optional salt string. If not specified, one will be autogenerated (this is
recommended). If specified, it must be 0-8 characters, drawn from the regexp range [./
0-9A-Za-z].

• relaxed (bool) – By default, providing an invalid value for one of the other keywords
will result in a ValueError. If relaxed=True, and the error can be corrected, a
PasslibHashWarning will be issued instead. Correctable errors include salt strings
that are too long.

New in version 1.6.

Format & Algorithm

This format and algorithm of Apache’s MD5-Crypt is identical to the original MD5-Crypt, except for two changes:

1. The encoded string uses $apr1$ as its prefix, while md5-crypt uses 1.

2. The algorithm uses $apr1$ as a constant in the step where md5-crypt uses 1 in its calculation of digest B
(see the md5-crypt algorithm). Because of this change, even raw checksums generated by apr-md5-crypt and
md5-crypt are not compatible with each other.

See md5_crypt for the format & algorithm descriptions, as well as security notes.

passlib.hash.cta_pbkdf2_sha1 - Cryptacular’s PBKDF2 hash

This class provides an implementation of Cryptacular’s PBKDF2-HMAC-SHA1 hash format1. PBKDF2 is a key
derivation function2 that is ideally suited as the basis for a password hash, as it provides variable length salts, variable

1 The reference for this hash format - https://bitbucket.org/dholth/cryptacular/.
2 The specification for the PBKDF2 algorithm - http://tools.ietf.org/html/rfc2898#section-5.2.

116 Chapter 3. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://bitbucket.org/dholth/cryptacular/
http://tools.ietf.org/html/rfc2898#section-5.2

Passlib Documentation, Release 1.8.0.dev0

number of rounds.

See also:

• password hash usage – for examples of how to use this class via the common hash interface.

• dlitz_pbkdf2_sha1 for another hash which looks almost exactly like this one.

Interface

class passlib.hash.cta_pbkdf2_sha1
This class implements Cryptacular’s PBKDF2-based crypt algorithm, and follows the PasswordHash API.

It supports a variable-length salt, and a variable number of rounds.

The using() method accepts the following optional keywords:

Parameters

• salt (bytes) – Optional salt bytes. If specified, it may be any length. If not specified, a
one will be autogenerated (this is recommended).

• salt_size (int) – Optional number of bytes to use when autogenerating new salts.
Defaults to 16 bytes, but can be any value between 0 and 1024.

• rounds (int) – Optional number of rounds to use. Defaults to 60000, must be within
range(1,1<<32).

• relaxed (bool) – By default, providing an invalid value for one of the other keywords
will result in a ValueError. If relaxed=True, and the error can be corrected, a
PasslibHashWarning will be issued instead. Correctable errors include rounds that
are too small or too large, and salt strings that are too long.

New in version 1.6.

Format & Algorithm

A example hash (of password) is:

$p5k2$2710$oX9ZZOcNgYoAsYL-8bqxKg==$AU2JLf2rNxWoZxWxRCluY0u6h6c=

All of this scheme’s hashes have the format $p5k2$rounds$salt$checksum, where:

• $p5k2$ is used as the Modular Crypt Format identifier.

• rounds is the number of PBKDF2 iterations to perform, stored as lowercase hexadecimal number with no
zero-padding (in the example: 2710 or 10000 iterations).

• salt is the salt string encoding using base64 (with -_ as the high values). oX9ZZOcNgYoAsYL-8bqxKg==
in the example.

• checksum is 28 characters encoding the resulting 20-byte PBKDF2 derived key using base64 (with -_ as the
high values). AU2JLf2rNxWoZxWxRCluY0u6h6c= in the example.

In order to generate the checksum, the password is first encoded into UTF-8 if it’s unicode. The salt is decoded from
its base64 representation. PBKDF2 is called using the encoded password, the full salt, the specified number of rounds,
and using HMAC-SHA1 as its pseudorandom function. 20 bytes of derived key are requested, and the resulting key is
encoded and used as the checksum portion of the hash.

3.7. passlib.hash - Password Hashing Schemes 117

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError

Passlib Documentation, Release 1.8.0.dev0

passlib.hash.dlitz_pbkdf2_sha1 - Dwayne Litzenberger’s PBKDF2 hash

Warning: Due to a small flaw, this hash is not as strong as other PBKDF1-HMAC-SHA1 based hashes. It should
probably not be used for new applications.

This class provides an implementation of Dwayne Litzenberger’s PBKDF2-HMAC-SHA1 hash format1. PBKDF2 is
a key derivation function2 that is ideally suited as the basis for a password hash, as it provides variable length salts,
variable number of rounds.

See also:

• password hash usage – for examples of how to use this class via the common hash interface.

• cta_pbkdf2_sha1 for another hash which looks almost exactly like this one.

Interface

class passlib.hash.dlitz_pbkdf2_sha1
This class implements Dwayne Litzenberger’s PBKDF2-based crypt algorithm, and follows the PasswordHash
API.

It supports a variable-length salt, and a variable number of rounds.

The using() method accepts the following optional keywords:

Parameters

• salt (str) – Optional salt string. If specified, it may be any length, but must use the
characters in the regexp range [./0-9A-Za-z]. If not specified, a 16 character salt will
be autogenerated (this is recommended).

• salt_size (int) – Optional number of bytes to use when autogenerating new salts.
Defaults to 16 bytes, but can be any value between 0 and 1024.

• rounds (int) – Optional number of rounds to use. Defaults to 60000, must be within
range(1,1<<32).

• relaxed (bool) – By default, providing an invalid value for one of the other keywords
will result in a ValueError. If relaxed=True, and the error can be corrected, a
PasslibHashWarning will be issued instead. Correctable errors include rounds that
are too small or too large, and salt strings that are too long.

New in version 1.6.

Format & Algorithm

A example hash (of password) is:

$p5k2$2710$.pPqsEwHD7MiECU0$b8TQ5AMQemtlaSgegw5Je.JBE3QQhLbO.

All of this scheme’s hashes have the format $p5k2$rounds$salt$checksum, where:

• $p5k2$ is used as the Modular Crypt Format identifier.

1 The reference for this hash format - http://www.dlitz.net/software/python-pbkdf2/.
2 The specification for the PBKDF2 algorithm - http://tools.ietf.org/html/rfc2898#section-5.2.

118 Chapter 3. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
http://www.dlitz.net/software/python-pbkdf2/
http://tools.ietf.org/html/rfc2898#section-5.2

Passlib Documentation, Release 1.8.0.dev0

• rounds is the number of PBKDF2 iterations to perform, stored as lowercase hexadecimal number with no
zero-padding (in the example: 2710 or 10000 iterations).

• salt is the salt string, which can be any number of characters, drawn from the hash64 charset (.
pPqsEwHD7MiECU0 in the example).

• checksum is 32 characters, which encode the resulting 24-byte PBKDF2 derived key using ab64_encode()
(b8TQ5AMQemtlaSgegw5Je.JBE3QQhLbO in the example).

In order to generate the checksum, the password is first encoded into UTF-8 if it’s unicode. Then, the entire configura-
tion string (all of the hash except the checksum, ie $p5k2$rounds$salt) is used as the PBKDF2 salt. PBKDF2 is
called using the encoded password, the full salt, the specified number of rounds, and using HMAC-SHA1 as its pseu-
dorandom function. 24 bytes of derived key are requested, and the resulting key is encoded and used as the checksum
portion of the hash.

Security Issues

• Extra Block: This hash generates 24 bytes using PBKDF2-HMAC-SHA1. Since SHA1 has a digest size of
only 20 bytes, this means an second PBKDF2 block must be generated for each dlitz_pbkdf2_sha1 hash.
While a normal user has to calculate both blocks, a dedicated attacker would only have to calculate the first block
when brute-forcing, taking half the time. That means this hash is half as strong as other PBKDF2-HMAC-SHA1
based hashes (given a fixed amount of time spent by the user).

3.7.4 LDAP / RFC2307 Hashes

All of the following hashes use a variant of the password hash format used by LDAPv2. Originally specified in RFC
2307 and used by OpenLDAP1, the basic format {SCHEME}HASH has seen widespread adoption in a number of
programs.

3.7.4.1 Standard LDAP Schemes

passlib.hash.ldap_digest - RFC2307 Standard Digests

Passlib provides support for all the standard LDAP hash formats specified by RFC 2307. This includes {MD5},
{SMD5}, {SHA}, {SSHA}. These schemes range from somewhat to very insecure, and should not be used except
when required. These classes all wrap the underlying hashlib implementations, and are can be used directly as follows:

>>> from passlib.hash import ldap_salted_md5 as lsm

>>> # hash password
>>> hash = lsm.hash("password")
>>> hash
'{SMD5}OqsUXNHIhHbznxrqHoIM+ZT8DmE='

>>> # verify password
>>> lms.verify("password", hash)
True
>>> lms.verify("secret", hash)
False

See also:

• password hash usage – for more usage examples

1 OpenLDAP homepage - http://www.openldap.org/.

3.7. passlib.hash - Password Hashing Schemes 119

https://tools.ietf.org/html/rfc2307.html
https://tools.ietf.org/html/rfc2307.html
https://tools.ietf.org/html/rfc2307.html
http://www.openldap.org/

Passlib Documentation, Release 1.8.0.dev0

• ldap_{crypt} – LDAP {CRYPT} wrappers for common Unix hash algorithms.

• passlib.apps – for a list of premade ldap contexts.

Plain Hashes

Warning: These hashes should not be considered secure in any way, as they are nothing but raw MD5 & SHA-1
digests, which are extremely vulnerable to brute-force attacks.

class passlib.hash.ldap_md5
This class stores passwords using LDAP’s plain MD5 format, and follows the PasswordHash API.

The hash() and genconfig() methods have no optional keywords.

class passlib.hash.ldap_sha1
This class stores passwords using LDAP’s plain SHA1 format, and follows the PasswordHash API.

The hash() and genconfig() methods have no optional keywords.

Format

These hashes have the format prefixchecksum.

• prefix is {MD5} for ldap_md5, and {SHA} for ldap_sha1.

• checksum is the base64 encoding of the raw message digest of the password, using the appropriate digest
algorithm.

An example ldap_md5 hash (of password) is {MD5}X03MO1qnZdYdgyfeuILPmQ==. An example ldap_sha1
hash (of password) is {SHA}W6ph5Mm5Pz8GgiULbPgzG37mj9g=.

Salted Hashes

class passlib.hash.ldap_salted_md5
This class stores passwords using LDAP’s salted MD5 format, and follows the PasswordHash API.

It supports a 4-16 byte salt.

The using() method accepts the following optional keywords:

Parameters

• salt (bytes) – Optional salt string. If not specified, one will be autogenerated (this is
recommended). If specified, it may be any 4-16 byte string.

• salt_size (int) – Optional number of bytes to use when autogenerating new salts.
Defaults to 4 bytes for compatibility with the LDAP spec, but some systems use larger salts,
and Passlib supports any value between 4-16.

• relaxed (bool) – By default, providing an invalid value for one of the other keywords
will result in a ValueError. If relaxed=True, and the error can be corrected, a
PasslibHashWarning will be issued instead. Correctable errors include salt strings
that are too long.

New in version 1.6.

Changed in version 1.6: This format now supports variable length salts, instead of a fix 4 bytes.

120 Chapter 3. API Reference

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError

Passlib Documentation, Release 1.8.0.dev0

class passlib.hash.ldap_salted_sha1
This class stores passwords using LDAP’s “Salted SHA1” format, and follows the PasswordHash API.

It supports a 4-16 byte salt.

The using() method accepts the following optional keywords:

Parameters

• salt (bytes) – Optional salt string. If not specified, one will be autogenerated (this is
recommended). If specified, it may be any 4-16 byte string.

• salt_size (int) – Optional number of bytes to use when autogenerating new salts.
Defaults to 4 bytes for compatibility with the LDAP spec, but some systems use larger salts,
and Passlib supports any value between 4-16.

• relaxed (bool) – By default, providing an invalid value for one of the other keywords
will result in a ValueError. If relaxed=True, and the error can be corrected, a
PasslibHashWarning will be issued instead. Correctable errors include salt strings
that are too long.

New in version 1.6.

Changed in version 1.6: This format now supports variable length salts, instead of a fix 4 bytes.

class passlib.hash.ldap_salted_sha256
This class stores passwords using LDAP’s “Salted SHA2-256” format, and follows the PasswordHash API.

It supports a 4-16 byte salt.

The using() method accepts the following optional keywords:

Parameters

• salt (bytes) – Optional salt string. If not specified, one will be autogenerated (this is
recommended). If specified, it may be any 4-16 byte string.

• salt_size (int) – Optional number of bytes to use when autogenerating new salts.
Defaults to 8 bytes for compatibility with the LDAP spec, but Passlib supports any value
between 4-16.

• relaxed (bool) – By default, providing an invalid value for one of the other keywords
will result in a ValueError. If relaxed=True, and the error can be corrected, a
PasslibHashWarning will be issued instead. Correctable errors include salt strings
that are too long.

New in version 1.7.3.

class passlib.hash.ldap_salted_sha512
This class stores passwords using LDAP’s “Salted SHA2-512” format, and follows the PasswordHash API.

It supports a 4-16 byte salt.

The using() method accepts the following optional keywords:

Parameters

• salt (bytes) – Optional salt string. If not specified, one will be autogenerated (this is
recommended). If specified, it may be any 4-16 byte string.

• salt_size (int) – Optional number of bytes to use when autogenerating new salts.
Defaults to 8 bytes for compatibility with the LDAP spec, but Passlib supports any value
between 4-16.

3.7. passlib.hash - Password Hashing Schemes 121

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int

Passlib Documentation, Release 1.8.0.dev0

• relaxed (bool) – By default, providing an invalid value for one of the other keywords
will result in a ValueError. If relaxed=True, and the error can be corrected, a
PasslibHashWarning will be issued instead. Correctable errors include salt strings
that are too long.

New in version 1.7.3.

These hashes have the format prefixdata.

• prefix is {SMD5} for ldap_salted_md5, and {SSHA} for ldap_salted_sha1.

• data is the base64 encoding of checksumsalt; and in turn salt is a multi-byte binary salt, and checksum
is the raw digest of the the string passwordsalt, using the appropriate digest algorithm.

Format

An example hash (of password) is {SMD5}jNoSMNY0cybfuBWiaGlFw3Mfi/U=. After de-
coding, this results in a raw salt string s\x1f\x8b\xf5, and a raw MD5 checksum of
\x8c\xda\x120\xd64s&\xdf\xb8\x15\xa2hiE\xc3.

An example hash (of password) is {SSHA}pKqkNr1tq3wtQqk+UcPyA3HnA2NsU5NJ. Af-
ter decoding, this results in a raw salt string lS\x93I, and a raw SHA1 checksum of
\xa4\xaa\xa46\xbdm\xab|-B\xa9>Q\xc3\xf2\x03q\xe7\x03c.

Security Issues

The LDAP salted hashes should not be considered very secure.

• They use only a single round of digests with known collision and pre-image attacks (SHA1 & MD5).

• They currently use only 32 bits of entropy in their salt, which is only borderline sufficient to defeat rainbow
tables, and cannot (portably) be increased.

• The SHA2 salted hashes (SSHA256, SSHA512) are only marginally better. they use the newer SHA2 hash; and
64 bits of entropy in their salt.

Plaintext

class passlib.hash.ldap_plaintext
This class stores passwords in plaintext, and follows the PasswordHash API.

This class acts much like the generic passlib.hash.plaintext handler, except that it will identify a hash
only if it does NOT begin with the {XXX} identifier prefix used by RFC2307 passwords.

The hash(), genhash(), and verify() methods all require the following additional contextual keyword:

Parameters encoding (str) – This controls the character encoding to use (defaults to utf-8).

This encoding will be used to encode str passwords under Python 2, and decode bytes hashes
under Python 3.

Changed in version 1.6: The encoding keyword was added.

This handler does not hash passwords at all, rather it encoded them into UTF-8. The only difference between this class
and plaintext is that this class will NOT recognize any strings that use the {SCHEME}HASH format.

122 Chapter 3. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str

Passlib Documentation, Release 1.8.0.dev0

Deviations

• The salt size for the salted digests appears to vary between applications. While OpenLDAP is fixed at 4 bytes,
some systems appear to use 8 or more. As of 1.6, Passlib can accept and generate strings with salts between
4-16 bytes, though various servers may differ in what they can handle.

The following schemes are explicitly defined by RFC 2307, and are supported by OpenLDAP.

• passlib.hash.ldap_md5 - MD5 digest

• passlib.hash.ldap_sha1 - SHA1 digest

• passlib.hash.ldap_salted_md5 - salted MD5 digest

• passlib.hash.ldap_salted_sha1 - salted SHA1 digest

• passlib.hash.ldap_salted_sha256 - salted SHA256 digest

• passlib.hash.ldap_salted_sha512 - salted SHA512 digest

passlib.hash.ldap_crypt - LDAP crypt() Wrappers

Passlib provides support for all the standard LDAP hash formats specified by RFC 2307. One of these, identified
by RFC 2307 as the {CRYPT} scheme, is somewhat different from the others. Instead of specifying a password
hashing scheme, it’s supposed to wrap the host OS’s crypt(). Being host-dependant, the actual hashes supported
by this scheme may differ greatly between host systems. In order to provide uniform support across platforms, Passlib
defines a corresponding ldap_crypt-scheme class for each of the standard unix hashes. These classes all wrap
the underlying implementations documented elsewhere in Passlib, and can be used directly as follows:

>>> from passlib.hash import ldap_md5_crypt

>>> # hash password
>>> hash = ldap_md5_crypt.hash("password")
>>> hash
'{CRYPT}1gwvn5BO0$3dyk8j.UTcsNUPrLMsU6/0'

>>> # verify password
>>> ldap_md5_crypt.verify("password", hash)
True
>>> ldap_md5_crypt.verify("secret", hash)
False

>>> # determine if the underlying crypt() algorithm is supported
>>> # by your host OS, or if the builtin Passlib implementation is being used.
>>> # "os_crypt" - host supported; "builtin" - passlib version
>>> ldap_md5_crypt.get_backend()
"os_crypt"

See also:

• password hash usage – for more usage examples

• ldap_{digest} – for the other standard LDAP hashes.

• passlib.apps – for a list of premade ldap contexts.

3.7. passlib.hash - Password Hashing Schemes 123

https://tools.ietf.org/html/rfc2307.html

Passlib Documentation, Release 1.8.0.dev0

Interface

class passlib.hash.ldap_des_crypt

class passlib.hash.ldap_bsdi_crypt

class passlib.hash.ldap_md5_crypt

class passlib.hash.ldap_bcrypt

class passlib.hash.ldap_sha1_crypt

class passlib.hash.ldap_sha256_crypt

class passlib.hash.ldap_sha512_crypt
All of these classes have the same interface as their corresponding underlying hash (e.g. des_crypt,
md5_crypt, etc).

• passlib.hash.ldap_plaintext - LDAP-Aware Plaintext Handler

3.7.4.2 Non-Standard LDAP Schemes

None of the following schemes are actually used by LDAP, but follow the LDAP format:

passlib.hash.ldap_other - Non-Standard RFC2307 Hashes

This section as a catch-all for a number of password hash formats supported by Passlib which use RFC 2307 style
encoding, but are not part of any standard.

See also:

• password hash usage – for examples of how to use these classes via the common hash interface.

• LDAP / RFC2307 Hashes for a full list of RFC 2307 style hashes.

Hexadecimal Digests

All of the digests specified in RFC 2307 use base64 encoding. The following are non-standard versions which use
hexadecimal encoding, as is found in some applications.

class passlib.hash.ldap_hex_md5
hexadecimal version of ldap_md5, this is just the md5 digest of the password.

an example hash (of password) is {MD5}5f4dcc3b5aa765d61d8327deb882cf99.

class passlib.hash.ldap_hex_sha1
hexadecimal version of ldap_sha1, this is just the sha1 digest of the password.

an example hash (of password) is {SHA}5baa61e4c9b93f3f0682250b6cf8331b7ee68fd8.

Other Hashes

class passlib.hash.roundup_plaintext
RFC 2307 specifies plaintext passwords should be stored without any identifying prefix. This class implements
an alternate method used by the Roundup Issue Tracker1, which (when storing plaintext passwords) uses the
identifying prefix {plaintext}.

1 Roundup Issue Tracker homepage - http://www.roundup-tracker.org.

124 Chapter 3. API Reference

https://tools.ietf.org/html/rfc2307.html
http://www.roundup-tracker.org

Passlib Documentation, Release 1.8.0.dev0

an example hash (of password) is {plaintext}password.

• passlib.hash.ldap_hex_md5 - Hex-encoded MD5 Digest

• passlib.hash.ldap_hex_sha1 - Hex-encoded SHA1 Digest

passlib.hash.ldap_pbkdf2_digest - Generic PBKDF2 Hashes

Passlib provides three custom hash schemes based on the PBKDF21 algorithm which are compatible with the ldap
hash format: ldap_pbkdf2_sha1, ldap_pbkdf2_sha256, ldap_pbkdf2_sha512. They feature variable
length salts, variable rounds.

See also:

These classes are simply wrappers around the MCF-Compatible Simple PBKDF2 Hashes.

Interface

class passlib.hash.ldap_pbkdf2_sha1
this is the same as pbkdf2_sha1, except that it uses {PBKDF2} as its identifying prefix instead of
$pdkdf2$.

class passlib.hash.ldap_pbkdf2_sha256
this is the same as pbkdf2_sha256, except that it uses {PBKDF2-SHA256} as its identifying prefix instead
of $pdkdf2-sha256$.

class passlib.hash.ldap_pbkdf2_sha512
this is the same as pbkdf2_sha512, except that it uses {PBKDF2-SHA512} as its identifying prefix instead
of $pdkdf2-sha512$.

passlib.hash.atlassian_pbkdf2_sha1 - Atlassian’s PBKDF2-based Hash

This class provides an implementation of the PBKDF2 based hash used by Atlassian in Jira and other products. Note
that unlike the most PBKDF2 hashes supported by Passlib, this one uses a fixed number of rounds (10000). That is
currently a sufficient amount, but it cannot be altered; so this scheme should only be used to read existing hashes, and
not used in new applications.

See also:

• password hash usage – for examples of how to use this class via the common hash interface.

• passlib.hash.pbkdf2_{digest} – for some other PBKDF2-based hashes.

Interface

class passlib.hash.atlassian_pbkdf2_sha1
This class implements the PBKDF2 hash used by Atlassian.

It supports a fixed-length salt, and a fixed number of rounds.

The using() method accepts the following optional keywords:

Parameters
1 The specification for the PBKDF2 algorithm - http://tools.ietf.org/html/rfc2898#section-5.2, part of RFC 2898.

3.7. passlib.hash - Password Hashing Schemes 125

http://tools.ietf.org/html/rfc2898#section-5.2
https://tools.ietf.org/html/rfc2898.html

Passlib Documentation, Release 1.8.0.dev0

• salt (bytes) – Optional salt bytes. If specified, the length must be exactly 16 bytes. If
not specified, a salt will be autogenerated (this is recommended).

• relaxed (bool) – By default, providing an invalid value for one of the other keywords
will result in a ValueError. If relaxed=True, and the error can be corrected, a
PasslibHashWarning will be issued instead. Correctable errors include salt strings
that are too long.

New in version 1.6.

Format & Algorithm

All of this scheme’s hashes have the format {PKCS5S2}data, where data is a 64 character base64 encoded string;
which (when decoded), contains a 16 byte salt, and a 32 byte checksum.

A example hash (of password) is:

{PKCS5S2}DQIXJU038u4P7FdsuFTY/+35bm41kfjZa57UrdxHp2Mu3qF2uy+ooD+jF5t1tb8J

Once decoded, the salt value (in hexadecimal octets) is:

0d0217254d37f2ee0fec576cb854d8ff

and the checksum value (in hexadecimal octets) is:

edf96e6e3591f8d96b9ed4addc47a7632edea176bb2fa8a03fa3179b75b5bf09

When calculating the checksum: the password is encoded into UTF-8 if not already encoded. Using the specified salt,
and a fixed 10000 rounds, PBKDF2-HMAC-SHA1 is used to generate a 32 byte key, which appended to the salt and
encoded in base64.

passlib.hash.fshp - Fairly Secure Hashed Password

Note: While the SHA-2 variants of PBKDF1 have no critical security vulnerabilities, PBKDF1 itself has been
deprecated in favor of its successor, PBKDF2. Furthermore, FSHP has been listed as insecure by its author (for
unspecified reasons); so this scheme should probably only be used to support existing hashes.

The Fairly Secure Hashed Password (FSHP) scheme1 is a cross-platform hash based on PBKDF12, and uses an LDAP-
style hash format. It features a variable length salt, variable rounds, and support for cryptographic hashes from SHA-1
up to SHA-512. This class supports the standard Passlib options for rounds and salt, as well as a special digest keyword
for selecting the variant of FSHP to use. It can be used directly as follows:

>>> from passlib.hash import fshp

>>> # generate new salt, hash password
>>> hash = fshp.hash("password")
>>> hash
'{FSHP1|16|16384}PtoqcGUetmVEy/uR8715TNqKa8+teMF9qZO1lA9lJNUm1EQBLPZ+qPRLeEPHqy6C'

>>> # the same, but with an explicit number of rounds, larger salt, and specific
→˓variant
>>> fshp.using(rounds=40000, salt_size=32, variant="sha512").hash("password")

(continues on next page)

1 The FSHP homepage contains implementations in a wide variety of programming languages – https://github.com/bdd/
fshp-is-not-secure-anymore.

2 rfc defining PBKDF1 & PBKDF2 - http://tools.ietf.org/html/rfc2898 -

126 Chapter 3. API Reference

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://github.com/bdd/fshp-is-not-secure-anymore
https://github.com/bdd/fshp-is-not-secure-anymore
http://tools.ietf.org/html/rfc2898

Passlib Documentation, Release 1.8.0.dev0

(continued from previous page)

'{FSHP3|32|40000}cB8yE/CuADSgUTQZjWy+YTf/cvbU11D/rHNKiUiB6z4dIaO77U/rmNW
pgZcZllZbCra5GJ8ZfFRNwCHirPqvYTAnbaQQeFQbWym/frRrRev3buoygFQRYexl4091Pc5m'

>>> # verify password
>>> fshp.verify("password", hash)
True
>>> fshp.verify("secret", hash)
False

See also:

the generic PasswordHash usage examples

Interface

class passlib.hash.fshp
This class implements the FSHP password hash, and follows the PasswordHash API.

It supports a variable-length salt, and a variable number of rounds.

The using() method accepts the following optional keywords:

Parameters

• salt – Optional raw salt string. If not specified, one will be autogenerated (this is recom-
mended).

• salt_size – Optional number of bytes to use when autogenerating new salts. Defaults to
16 bytes, but can be any non-negative value.

• rounds – Optional number of rounds to use. Defaults to 480000, must be between 1 and
4294967295, inclusive.

• variant – Optionally specifies variant of FSHP to use.

– 0 - uses SHA-1 digest (deprecated).

– 1 - uses SHA-2/256 digest (default).

– 2 - uses SHA-2/384 digest.

– 3 - uses SHA-2/512 digest.

• relaxed (bool) – By default, providing an invalid value for one of the other keywords
will result in a ValueError. If relaxed=True, and the error can be corrected, a
PasslibHashWarning will be issued instead. Correctable errors include rounds that
are too small or too large, and salt strings that are too long.

New in version 1.6.

Format & Algorithm

All of this scheme’s hashes have the format: {FSHPvariant|saltsize|rounds}data. A example hash (of
password) is:

{FSHP1|16|16384}PtoqcGUetmVEy/uR8715TNqKa8+teMF9qZO1lA9lJNUm1EQBLPZ+qPRLeEPHqy6C

3.7. passlib.hash - Password Hashing Schemes 127

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError

Passlib Documentation, Release 1.8.0.dev0

• variant is a decimal integer identifying the version of FSHP; in particular, which cryptographic hash function
should be used to calculate the checksum. 1 in the example. (see the class description above for a list of possible
values).

• saltsize is a decimal integer identifying the number of bytes in the salt. 16 in the example.

• rounds is a decimal integer identifying the number of rounds to apply when calculating the checksum (see
below). 16384 in the example.

• data is a base64-encoded string which, when decoded, contains a salt string of the specified size, followed by
the checksum. In the example, the data portion decodes to a salt value (in hexadecimal octets) of:

3eda2a70651eb66544cbfb91f3bd794c

and a checksum value (in hexadecimal octets) of:

da8a6bcfad78c17da993b5940f6524d526d444012cf67ea8f44b7843c7ab2e82

FSHP is basically just a wrapper around PBKDF1: The checksum is calculated using pbkdf1(), passing in the
password, the decoded salt string, the number of rounds, and hash function specified by the variant identifier. FSHP
has one quirk in that the password is passed in as the pbkdf1 salt, and the salt is passed in as the pbkdf1 password.

Security Issues

• A minor issue is that FSHP swaps the location the password and salt from what is described in the PBKDF1
standard. This issue is mainly noted in order to dismiss it: while the swap permits an attacker to pre-calculate
part of the initial digest, the impact of this is negligible when a large number of rounds is used.

• Since PBKDF1 is based on repeated composition of a hash, it is vulnerable to any first-preimage attacks on the
underlying hash. This has led to the deprecation of using SHA-1 or earlier hashes with PBKDF1. In contrast,
its successor PBKDF2 was designed to mitigate this weakness (among other things), and enjoys much stronger
preimage resistance when used with the same cryptographic hashes.

Deviations

• Unicode Policy:

The official FSHP python implementation takes in a password specified as a series of bytes, and does not specify
what encoding should be used; though a us-ascii compatible encoding is implied by the implementation, as
well as all known reference hashes.

In order to provide support for unicode strings, Passlib will encode unicode passwords using utf-8 before
running them through FSHP. If a different encoding is desired by an application, the password should be encoded
before handing it to Passlib.

• passlib.hash.roundup_plaintext - Roundup-specific LDAP Plaintext Handler

3.7.5 SQL Database Hashes

The following schemes are used by various SQL databases to encode their own user accounts. These schemes have
encoding and contextual requirements not seen outside those specific contexts:

128 Chapter 3. API Reference

Passlib Documentation, Release 1.8.0.dev0

3.7.5.1 passlib.hash.mssql2000 - MS SQL 2000 password hash

Danger: This algorithm is not considered secure by modern standards. It should only be used when verifying
existing hashes, or when interacting with applications that require this format. For new code, see the list of
recommended hashes.

New in version 1.6.

This class implements the hash algorithm used by Microsoft SQL Server 2000 to store its user account passwords,
until it was replaced by a slightly more secure variant (mssql2005) in MSSQL 2005. This class can be used directly
as follows:

>>> from passlib.hash import mssql2000 as m20

>>> # hash password
>>> h = m20.hash("password")
>>> h

→˓'0x0100200420C4988140FD3920894C3EDC188E94F428D57DAD5905F6CC1CBAF950CAD4C63F272B2C91E4DEEB5E6444
→˓'

>>> # verify correct password
>>> m20.verify("password", h)
True
>>> m20.verify("letmein", h)
False

See also:

• password hash usage – for more usage examples

• mssql2005 – the successor to this hash.

Interface

class passlib.hash.mssql2000
This class implements the password hash used by MS-SQL 2000, and follows the PasswordHash API.

It supports a fixed-length salt.

The using() method accepts the following optional keywords:

Parameters

• salt (bytes) – Optional salt string. If not specified, one will be autogenerated (this is
recommended). If specified, it must be 4 bytes in length.

• relaxed (bool) – By default, providing an invalid value for one of the other keywords
will result in a ValueError. If relaxed=True, and the error can be corrected, a
PasslibHashWarning will be issued instead. Correctable errors include salt strings
that are too long.

Format & Algorithm

MSSQL 2000 hashes are usually presented as a series of 92 upper-case hexadecimal characters, prefixed by 0x. An
example MSSQL 2000 hash (of "password"):

3.7. passlib.hash - Password Hashing Schemes 129

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError

Passlib Documentation, Release 1.8.0.dev0

0x0100200420C4988140FD3920894C3EDC188E94F428D57DAD5905F6CC1CBAF950CAD4C63F272B2C91E4DEEB5E6444

This encodes 46 bytes of raw data, consisting of:

• a 2-byte constant 0100

• 4 byte of salt (200420C4 in the example)

• the first 20 byte digest (988140FD3920894C3EDC188E94F428D57DAD5905 in the example).

• a second 20 byte digest (F6CC1CBAF950CAD4C63F272B2C91E4DEEB5E6444 in the example).

The first digest is generated by encoding the unicode password using UTF-16-LE, and calculating
SHA1(encoded_secret + salt).

The second digest is generated the same as the first, except that the password is converted to upper-case first.

Only the second digest is used when verifying passwords (and hence the hash is case-insensitive). The first digest is
presumably for forward-compatibility: MSSQL 2005 removed the second digest, and thus became case sensitive.

Note: MSSQL 2000 hashes do not actually have a native textual format, as they are stored as raw bytes in an
SQL table. However, when external programs deal with them, MSSQL generally encodes raw bytes as upper-case
hexadecimal, prefixed with 0x. This is the representation Passlib uses.

Security Issues

This algorithm is reasonably weak, and shouldn’t be used for any purpose besides manipulating existing MSSQL 2000
hashes, due to the following flaws:

• The fact that it is case insensitive greatly reduces the keyspace that must be searched by brute-force or pre-
computed attacks.

• Its simplicity, and years of research on high-speed SHA1 implementations, makes efficient brute force attacks
much more feasible.

3.7.5.2 passlib.hash.mssql2005 - MS SQL 2005 password hash

Danger: This algorithm is not considered secure by modern standards. It should only be used when verifying
existing hashes, or when interacting with applications that require this format. For new code, see the list of
recommended hashes.

New in version 1.6.

This class implements the hash algorithm used by Microsoft SQL Server 2005 to store its user account passwords,
replacing the slightly less secure mssql2000 variant. This class can be used directly as follows:

>>> from passlib.hash import mssql2005 as m25

>>> # hash password
>>> h = m25.hash("password")
>>> h
'0x01006ACDF9FF5D2E211B392EEF1175EFFE13B3A368CE2F94038B'

>>> # verify password
(continues on next page)

130 Chapter 3. API Reference

Passlib Documentation, Release 1.8.0.dev0

(continued from previous page)

>>> m25.verify("password", h)
True
>>> m25.verify("letmein", h)
False

See also:

• password hash usage – for more usage examples

• mssql2000 – the predecessor to this hash.

Interface

class passlib.hash.mssql2005
This class implements the password hash used by MS-SQL 2005, and follows the PasswordHash API.

It supports a fixed-length salt.

The using() method accepts the following optional keywords:

Parameters

• salt (bytes) – Optional salt string. If not specified, one will be autogenerated (this is
recommended). If specified, it must be 4 bytes in length.

• relaxed (bool) – By default, providing an invalid value for one of the other keywords
will result in a ValueError. If relaxed=True, and the error can be corrected, a
PasslibHashWarning will be issued instead. Correctable errors include salt strings
that are too long.

Format & Algorithm

MSSQL 2005 hashes are usually presented as a series of 52 upper-case hexadecimal characters, prefixed by 0x. An
example MSSQL 2005 hash (of "password"):

0x01006ACDF9FF5D2E211B392EEF1175EFFE13B3A368CE2F94038B

This encodes 26 bytes of raw data, consisting of:

• a 2-byte constant 0100

• 4 byte of salt (6ACDF9FF in the example)

• 20 byte digest (5D2E211B392EEF1175EFFE13B3A368CE2F94038B in the example).

The digest is generated by encoding the unicode password using UTF-16-LE, and calculating
SHA1(encoded_secret + salt).

This format and algorithm is identical to mssql2000, except that this hash omits the 2nd case-insensitive digest used
by MSSQL 2000.

Note: MSSQL 2005 hashes do not actually have a native textual format, as they are stored as raw bytes in an
SQL table. However, when external programs deal with them, MSSQL generally encodes raw bytes as upper-case
hexadecimal, prefixed with 0x. This is the representation Passlib uses.

3.7. passlib.hash - Password Hashing Schemes 131

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError

Passlib Documentation, Release 1.8.0.dev0

Security Issues

This algorithm is reasonably weak, and shouldn’t be used for any purpose besides manipulating existing MSSQL 2005
hashes. This mainly due to its simplicity, and years of research on high-speed SHA1 implementations, which makes
efficient brute force attacks feasible.

3.7.5.3 passlib.hash.mysql323 - MySQL 3.2.3 password hash

Danger: This algorithm is not considered secure by modern standards. It should only be used when verifying
existing hashes, or when interacting with applications that require this format. For new code, see the list of
recommended hashes.

This class implements the first of MySQL’s password hash functions, used to store its user account passwords. Intro-
duced in MySQL 3.2.3 under the function PASSWORD(), this function was renamed to OLD_PASSWORD() under
MySQL 4.1, when a newer password hash algorithm was introduced (see mysql41). Users will most likely find the
frontends provided by passlib.apps to be more useful than accessing this class directly. That aside, this class can
be used as follows:

>>> from passlib.hash import mysql323

>>> # hash password
>>> mysql323.hash("password")
'5d2e19393cc5ef67'

>>> # verify correct password
>>> mysql323.verify("password", '5d2e19393cc5ef67')
True
>>> mysql323.verify("secret", '5d2e19393cc5ef67')
False

See also:

• password hash usage – for more usage examples

• passlib.apps – for a list of predefined mysql contexts.

Interface

class passlib.hash.mysql323
This class implements the MySQL 3.2.3 password hash, and follows the PasswordHash API.

It has no salt and a single fixed round.

The hash() and genconfig() methods accept no optional keywords.

Format & Algorithm

A mysql-323 password hash consists of 16 hexadecimal digits, directly encoding the 64 bit checksum. MySQL always
uses lower-case letters, and so does Passlib (though Passlib will recognize upper case letters as well).

The algorithm used is extremely simplistic, for details, see the source implementation in the footnotes1.

1 Source of implementation used by Passlib - http://djangosnippets.org/snippets/1508/

132 Chapter 3. API Reference

http://djangosnippets.org/snippets/1508/

Passlib Documentation, Release 1.8.0.dev0

Security Issues

Lacking any sort of salt, ignoring all whitespace, and having a simplistic algorithm that amounts to little more than
a checksum, this is not secure, and should not be used for any purpose but verifying existing MySQL 3.2.3 - 4.0
password hashes.

3.7.5.4 passlib.hash.mysql41 - MySQL 4.1 password hash

Danger: This algorithm is not considered secure by modern standards. It should only be used when verifying
existing hashes, or when interacting with applications that require this format. For new code, see the list of
recommended hashes.

This class implements the second of MySQL’s password hash functions, used to store its user account passwords.
Introduced in MySQL 4.1.1 under the function PASSWORD(), it replaced the previous algorithm (mysql323) as the
default used by MySQL, and is still in active use under MySQL 5. Users will most likely find the frontends provided
by passlib.apps to be more useful than accessing this class directly.

See also:

• password hash usage – for examples of how to use this class via the common hash interface.

• passlib.apps for a list of premade mysql contexts.

Interface

class passlib.hash.mysql41
This class implements the MySQL 4.1 password hash, and follows the PasswordHash API.

It has no salt and a single fixed round.

The hash() and genconfig() methods accept no optional keywords.

Format & Algorithm

A mysql-41 password hash consists of an asterisk * followed by 40 hexadecimal digits, directly encoding the 160
bit checksum. An example hash (of password) is *2470C0C06DEE42FD1618BB99005ADCA2EC9D1E19.
MySQL always uses upper-case letters, and so does Passlib (though Passlib will recognize lower-case letters as well).

The checksum is calculated simply, as the SHA1 hash of the SHA1 hash of the password, which is then encoded into
hexadecimal.

Security Issues

Lacking any sort of salt, and using only 2 rounds of the common SHA1 message digest, it’s not very secure, and should
not be used for any purpose but verifying existing MySQL 4.1+ password hashes.

3.7. passlib.hash - Password Hashing Schemes 133

Passlib Documentation, Release 1.8.0.dev0

3.7.5.5 passlib.hash.postgres_md5 - PostgreSQL MD5 password hash

Danger: This algorithm is not considered secure by modern standards. It should only be used when verifying
existing hashes, or when interacting with applications that require this format. For new code, see the list of
recommended hashes.

This class implements the md5-based hash algorithm used by PostgreSQL to store its user account passwords. This
scheme was introduced in PostgreSQL 7.2; prior to this PostgreSQL stored its password in plain text. Users will most
likely find the frontend provided by passlib.apps to be more useful than accessing this class directly. That aside,
this class can be used directly as follows:

>>> from passlib.hash import postgres_md5

>>> # hash password using specified username
>>> hash = postgres_md5.hash("password", user="username")
>>> hash
'md55a231fcdb710d73268c4f44283487ba2'

>>> # verify correct password
>>> postgres_md5.verify("password", hash, user="username")
True
>>> # verify correct password w/ wrong username
>>> postgres_md5.verify("password", hash, user="somebody")
False
>>> # verify incorrect password
>>> postgres_md5.verify("password", hash, user="username")
False

See also:

the generic PasswordHash usage examples

Interface

class passlib.hash.postgres_md5
This class implements the Postgres MD5 Password hash, and follows the PasswordHash API.

It does a single round of hashing, and relies on the username as the salt.

The hash(), genhash(), and verify() methods all require the following additional contextual keywords:

Parameters user (str) – name of postgres user account this password is associated with.

Format & Algorithm

Postgres-MD5 hashes all have the format md5checksum, where checksum is 32 hexadecimal digits, encoding a
128-bit checksum. This checksum is the MD5 message digest of the password concatenated with the username.

Security Issues

This algorithm it not suitable for any use besides manipulating existing PostgreSQL account passwords, due to the
following flaws:

134 Chapter 3. API Reference

https://docs.python.org/3/library/stdtypes.html#str

Passlib Documentation, Release 1.8.0.dev0

• Its use of the username as a salt value means that common usernames (e.g. admin, root, postgres) will
occur more frequently as salts, weakening the effectiveness of the salt in foiling pre-computed tables.

• Since the keyspace of user+password is still a subset of ascii characters, existing MD5 lookup tables have
an increased chance of being able to reverse common hashes.

• Its simplicity makes high-speed brute force attacks much more feasible3 .

3.7.5.6 passlib.hash.oracle10 - Oracle 10g password hash

Danger: This algorithm is dangerously insecure by modern standards. It is trivially broken, and should not
be used if at all possible. For new code, see the list of recommended hashes.

This class implements the hash algorithm used by the Oracle Database up to version 10g Rel.2. It was superseded by
a newer algorithm in Oracle 11. This class can be used directly as follows (note that this class requires a username
for all encrypt/verify operations):

>>> from passlib.hash import oracle10 as oracle10

>>> # hash password using specified username
>>> hash = oracle10.hash("password", user="username")
>>> hash
'872805F3F4C83365'

>>> # verify correct password
>>> oracle10.verify("password", hash, user="username")
True
>>> # verify correct password w/ wrong username
>>> oracle10.verify("password", hash, user="somebody")
False
>>> # verify incorrect password
>>> oracle10.verify("letmein", hash, user="username")
False

See also:

the generic PasswordHash usage examples

Warning: This implementation has not been compared very carefully against the official implementation or
reference documentation, and its behavior may not match under various border cases. caveat emptor.

Interface

class passlib.hash.oracle10
This class implements the password hash used by Oracle up to version 10g, and follows the PasswordHash API.

It does a single round of hashing, and relies on the username as the salt.

The hash(), genhash(), and verify() methods all require the following additional contextual keywords:

Parameters user (str) – name of oracle user account this password is associated with.

3 Blog post demonstrating brute-force attack http://pentestmonkey.net/blog/cracking-postgres-hashes/.

3.7. passlib.hash - Password Hashing Schemes 135

https://docs.python.org/3/library/stdtypes.html#str
http://pentestmonkey.net/blog/cracking-postgres-hashes/

Passlib Documentation, Release 1.8.0.dev0

Format & Algorithm

Oracle10 hashes all consist of a series of 16 hexadecimal digits, representing the resulting checksum. Oracle10 hashes
can be formed by the following procedure:

1. Concatenate the username and password together.

2. Convert the result to upper case

3. Encoding the result in a multi-byte format1 such that ascii characters (eg: USER) are represented with additional
null bytes inserted (eg: \x00U\x00S\x00E\x00R).

4. Right-pad the result with null bytes, to bring the total size to an integer multiple of 8. this is the final input
string.

5. The input string is then encoded using DES in CBC mode. The string
\x01\x23\x45\x67\x89\xAB\xCD\xEF is used as the DES key, and a block of null bytes is used
as the CBC initialization vector. All but the last block of ciphertext is discarded.

6. The input string is then run through DES-CBC a second time; this time the last block of ciphertext from step 5
is used as the DES key, a block of null bytes is still used as the CBC initialization vector. All but the last block
of ciphertext is discarded.

7. The last block of ciphertext of step 6 is converted to a hexadecimal string, and returned as the checksum.

Security Issues

This algorithm it not suitable for any use besides manipulating existing Oracle10 account passwords, due to the
following flaws2:

• Its use of the username as a salt value means that common usernames (e.g. system) will occur more frequently
as salts, weakening the effectiveness of the salt in foiling pre-computed tables.

• The fact that it is case insensitive, and simply concatenates the username and password, greatly reduces the
keyspace that must be searched by brute-force or pre-computed attacks.

• Its simplicity, and decades of research on high-speed DES implementations, makes efficient brute force attacks
much more feasible.

Deviations

Passlib’s implementation of the Oracle10g hash may deviate from the official implementation in unknown ways, as
there is no official documentation. There is only one known issue:

• Unicode Policy

Lack of testing (and test vectors) leaves it unclear as to how Oracle 10g handles passwords containing non-
7bit ascii. In order to provide support for unicode strings, Passlib will encode unicode passwords using
utf-16-be1 before running them through the Oracle10g algorithm. This behavior may be altered in the
future, if further testing reveals another behavior is more in line with the official representation. This note
applies as well to any provided username, as they are run through the same policy.

1 The exact encoding used in step 3 of the algorithm is not clear from known references. Passlib uses utf-16-be, as this is both compatible
with existing test vectors, and supports unicode input.

2 Whitepaper analyzing flaws in this algorithm - http://www.isg.rhul.ac.uk/~ccid/publications/oracle_passwd.pdf.

136 Chapter 3. API Reference

http://www.isg.rhul.ac.uk/~ccid/publications/oracle_passwd.pdf

Passlib Documentation, Release 1.8.0.dev0

3.7.5.7 passlib.hash.oracle11 - Oracle 11g password hash

This class implements the hash algorithm introduced in version 11g of the Oracle Database. It supersedes the Oracle
10 password hash. This class can be can be used directly as follows:

>>> from passlib.hash import oracle11 as oracle11

>>> # generate new salt, hash password
>>> hash = oracle11.hash("password")
>>> hash
'S:4143053633E59B4992A8EA17D2FF542C9EDEB335C886EED9C80450C1B4E6'

>>> # verify password
>>> oracle11.verify("password", hash)
True
>>> oracle11.verify("secret", hash)
False

See also:

the generic PasswordHash usage examples

Warning: This implementation has not been compared very carefully against the official implementation or
reference documentation, and its behavior may not match under various border cases. caveat emptor.

Interface

class passlib.hash.oracle11
This class implements the Oracle11g password hash, and follows the PasswordHash API.

It supports a fixed-length salt.

The using() method accepts the following optional keywords:

Parameters

• salt (str) – Optional salt string. If not specified, one will be autogenerated (this is
recommended). If specified, it must be 20 hexadecimal characters.

• relaxed (bool) – By default, providing an invalid value for one of the other keywords
will result in a ValueError. If relaxed=True, and the error can be corrected, a
PasslibHashWarning will be issued instead. Correctable errors include salt strings
that are too long.

New in version 1.6.

Format & Algorithm

An example oracle11 hash (of the string password) is:

S:4143053633E59B4992A8EA17D2FF542C9EDEB335C886EED9C80450C1B4E6

An oracle11 hash string has the format S:checksumsalt, where:

• S: is the prefix used to identify oracle11 hashes (as distinct from oracle10 hashes, which have no constant
prefix).

3.7. passlib.hash - Password Hashing Schemes 137

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError

Passlib Documentation, Release 1.8.0.dev0

• checksum is 40 hexadecimal characters; encoding a 160-bit checksum.

(4143053633E59B4992A8EA17D2FF542C9EDEB335 in the example)

• salt is 20 hexadecimal characters; providing a 80-bit salt (C886EED9C80450C1B4E6 in the example).

The Oracle 11 hash has a very simple algorithm: The salt is decoded from its hexadecimal representation into binary,
and the SHA-1 digest of passwordraw_salt is then encoded into hexadecimal, and returned as the checksum.

Deviations

Passlib’s implementation of the Oracle11g hash may deviate from the official implementation in unknown ways, as
there is no official documentation. There is only one known issue:

• Unicode Policy

Lack of testing (and test vectors) leaves it unclear as to how Oracle 11g handles passwords containing non-7bit
ascii. In order to provide support for unicode strings, Passlib will encode unicode passwords using utf-8
before running them through Oracle11. This behavior may be altered in the future, if further testing reveals
another behavior is more in line with the official representation.

3.7.6 MS Windows Hashes

The following hashes are used in various places by Microsoft Windows. As they were designed for “internal” use,
they generally contain no identifying markers, identifying them is pretty much context-dependant.

3.7.6.1 passlib.hash.lmhash - LanManager Hash

Danger: This algorithm is not considered secure by modern standards. It should only be used when verifying
existing hashes, or when interacting with applications that require this format. For new code, see the list of
recommended hashes.

New in version 1.6.

This class implements the LanManager Hash (aka LanMan or LM hash). It was used by early versions of Microsoft
Windows to store user passwords, until it was supplanted (though not entirely replaced) by the nthash algorithm in
Windows NT. It continues to crop up in production due to its integral role in the legacy NTLM authentication protocol.
This class can be used directly as follows:

>>> from passlib.hash import lmhash

>>> # hash password
>>> h = lmhash.hash("password")
>>> h
'e52cac67419a9a224a3b108f3fa6cb6d'

>>> # verify correct password
>>> lmhash.verify("password", h)
True
>>> # verify incorrect password
>>> lmhash.verify("secret", h)
False

138 Chapter 3. API Reference

Passlib Documentation, Release 1.8.0.dev0

See also:

the generic PasswordHash usage examples

Interface

class passlib.hash.lmhash
This class implements the Lan Manager Password hash, and follows the PasswordHash API.

It has no salt and a single fixed round.

The using() method accepts a single optional keyword:

Parameters truncate_error (bool) – By default, this will silently truncate passwords
larger than 14 bytes. Setting truncate_error=True will cause hash() to raise a
PasswordTruncateError instead.

New in version 1.7.

The hash() and verify() methods accept a single optional keyword:

Parameters encoding (str) – This specifies what character encoding LMHASH should use
when calculating digest. It defaults to cp437, the most common encoding encountered.

Note that while this class outputs digests in lower-case hexadecimal, it will accept upper-case as well.

Issues with Non-ASCII Characters

Passwords containing only ascii characters should hash and compare correctly across all LMhash implementations.
However, due to historical issues, no two LMhash implementations handle non-ascii characters in quite the same
way. While Passlib makes every attempt to behave as close to correct as possible, the meaning of “correct” is dependant
on the software you are interoperating with. If you think you will have passwords containing non-ascii characters,
please read the Deviations section (below) for details about the known interoperability issues. It’s a mess of codepages.

Format & Algorithm

A LM hash consists of 32 hexadecimal digits, which encode the 16 byte digest. An example hash (of password) is
e52cac67419a9a224a3b108f3fa6cb6d.

The digest is calculated as follows:

1. First, the password should be converted to uppercase, and encoded using the “OEM Codepage” of the Windows
release that the host / target server is running2.

For pure-ASCII passwords, this step can be performed using the us-ascii encoding (as most OEM Code-
pages are ASCII-compatible). However, for passwords with non-ASCII characters, this step is fraught with
compatibility issues and border cases (see Deviations for details).

2. The password is then truncated to 14 bytes, or the end NULL padded to 14 bytes; as appropriate.

3. The first 7 bytes of the truncated password from step 2 are used as a key to DES encrypt the constant KGS!@#$%,
resulting in the first 8 bytes of the final digest.

4. Step 3 is repeated using the second 7 bytes of the password from step 2, resulting in the second 8 bytes of the
final digest.

2 The OEM codepage used by specific Window XP (and earlier) releases can be found at http://msdn.microsoft.com/nl-nl/goglobal/cc563921%
28en-us%29.aspx.

3.7. passlib.hash - Password Hashing Schemes 139

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
http://msdn.microsoft.com/nl-nl/goglobal/cc563921%28en-us%29.aspx
http://msdn.microsoft.com/nl-nl/goglobal/cc563921%28en-us%29.aspx

Passlib Documentation, Release 1.8.0.dev0

5. The combined digests from 3 and 4 are then encoded to hexadecimal.

Security Issues

Due to a myriad of flaws, and the existence high-speed password cracking software dedicated to LMHASH, this
algorithm should be considered broken. The major flaws include:

• It has no salt, making hashes easily pre-computable.

• It limits the password to 14 characters, and converts the password to uppercase before hashing, greatly reducing
the keyspace.

• By breaking the password into two independent chunks, they can be attacked independently and simultaneously.

• The independence of the chunks reveals significant information about the original password: The second 8 bytes
of the digest are the same for all passwords < 8 bytes; and for passwords of 8-9 characters, the second chunk
can be broken much faster, revealing part of the password, and reducing the likely keyspace for the first chunk.

Deviations

Passlib’s implementation differs from others in a few ways, all related to the handling of non-ASCII characters.

• Unicode Policy:

Officially, unicode passwords should be encoded using the “OEM Codepage” used2 by the specific release of
Windows that the host or target server is running. Common encodings include cp437 (used by the English
edition of Windows XP), cp580 (used by many Western European editions of XP), and cp866 (used by
many Eastern European editions of XP). Complicating matters further, some third-party implementations are
known to use encodings such as latin-1 and utf-8, which cause non-ASCII characters to hash in a manner
incompatible with the canonical MS Windows implementation.

Thus if an application wishes to provide support for non-ASCII passwords, it must decide which encoding to
use.

Passlib uses cp437 as it’s default encoding for unicode strings. However, if your database used a different
encoding, you will need to either first encode the passwords into bytes, or override the default encoding via
lmhash.hash(secret, encoding="some-other-codec")

All known encodings are us-ascii-compatible, so for ASCII passwords, the default should be sufficient.

• Upper Case Conversion:

Note: Future releases of Passlib may change this behavior as new information and code is integrated.

Once critical step in the LMHASH algorithm is converting the password to upper case. While ASCII characters
are uppercased as normal, non-ASCII characters are converted in implementation-dependant ways:

Windows systems encode the password first, and then convert it to uppercase using an codepage-specific table.
For the most part these tables seem to agree with the Unicode specification, but there are some codepoints where
they deviate (for example, Unicode uppercases U+00B5 -> U+039C, but cp437 leaves it unchanged3).

In contrast, most third-party implementations (Passlib included) perform the uppercase conversion first using
the Unicode specification, and then encode the password second; despite the non-ASCII border cases where the
resulting hash would not match the official Windows hash.

3 Online discussion dealing with upper-case encoding issues - http://www.openwall.com/lists/john-dev/2011/08/01/2.

140 Chapter 3. API Reference

http://www.openwall.com/lists/john-dev/2011/08/01/2

Passlib Documentation, Release 1.8.0.dev0

3.7.6.2 passlib.hash.nthash - Windows’ NT-HASH

Danger: This algorithm is dangerously insecure by modern standards. It is trivially broken, and should not
be used if at all possible. For new code, see the list of recommended hashes.

New in version 1.6.

This class implements the NT-HASH algorithm, used by Microsoft Windows NT and successors to store user account
passwords, supplanting the much weaker lmhash algorithm. This class can be used directly as follows:

>>> from passlib.hash import nthash

>>> # hash password
>>> h = nthash.hash("password")
>>> h
'8846f7eaee8fb117ad06bdd830b7586c'

>>> # verify password
>>> nthash.verify("password", h)
True
>>> nthash.verify("secret", h)
False

See also:

the generic PasswordHash usage examples

Interface

class passlib.hash.nthash
This class implements the NT Password hash, and follows the PasswordHash API.

It has no salt and a single fixed round.

The hash() and genconfig() methods accept no optional keywords.

Note that while this class outputs lower-case hexadecimal digests, it will accept upper-case digests as well.

Format & Algorithm

A nthash consists of 32 hexadecimal digits, which encode the digest. An example hash (of password) is
8846f7eaee8fb117ad06bdd830b7586c.

The digest is calculated by encoding the secret using UTF-16-LE, taking the MD4 digest, and then encoding that as
hexadecimal.

FreeBSD Variant

For cross-compatibility, FreeBSD’s crypt() supports storing NTHASH digests in a manner compatible
with the Modular Crypt Format, to enable administrators to store user passwords in a manner compatible
with the SMB/CIFS protocol. This is accomplished by assigning NTHASH digests the identifier 3, and
prepending the identifier to the normal (lowercase) NTHASH digest. An example digest (of password) is
$3$$8846f7eaee8fb117ad06bdd830b7586c (note the doubled $$).

3.7. passlib.hash - Password Hashing Schemes 141

Passlib Documentation, Release 1.8.0.dev0

passlib.hash.bsd_nthash
This object supports FreeBSD’s representation of NTHASH (which is compatible with the Modular Crypt For-
mat), and follows the PasswordHash API.

It has no salt and a single fixed round.

The hash() and genconfig() methods accept no optional keywords.

Changed in version 1.6: This hash was named nthash under previous releases of Passlib.

Security Issues

This algorithm should be considered completely broken:

• It has no salt.

• The MD4 message digest has been severely compromised by collision and preimage attacks.

• Brute-force and pre-computed attacks exist targeting MD4 hashes in general, and the encoding used by
NTHASH in particular.

3.7.6.3 passlib.hash.msdcc - Windows’ Domain Cached Credentials

Danger: This algorithm is not considered secure by modern standards. It should only be used when verifying
existing hashes, or when interacting with applications that require this format. For new code, see the list of
recommended hashes.

New in version 1.6.

This class implements the DCC (Domain Cached Credentials) hash, used by Windows to cache and verify remote
credentials when the relevant server is unavailable. It is known by a number of other names, including “mscache” and
“mscash” (Microsoft CAched haSH). Security wise it is not particularly strong, as it’s little more than nthash salted
with a username. It was replaced by msdcc2 in Windows Vista. This class can be used directly as follows:

>>> from passlib.hash import msdcc

>>> # hash password using specified username
>>> hash = msdcc.hash("password", user="Administrator")
>>> hash
'25fd08fa89795ed54207e6e8442a6ca0'

>>> # verify correct password
>>> msdcc.verify("password", hash, user="Administrator")
True
>>> # verify correct password w/ wrong username
>>> msdcc.verify("password", hash, user="User")
False
>>> # verify incorrect password
>>> msdcc.verify("letmein", hash, user="Administrator")
False

See also:

• password hash usage – for more usage examples

• msdcc2 – the successor to this hash

142 Chapter 3. API Reference

Passlib Documentation, Release 1.8.0.dev0

Interface

class passlib.hash.msdcc
This class implements Microsoft’s Domain Cached Credentials password hash, and follows the PasswordHash
API.

It has a fixed number of rounds, and uses the associated username as the salt.

The hash(), genhash(), and verify() methods have the following optional keywords:

Parameters user (str) – String containing name of user account this password is associated with.
This is required to properly calculate the hash.

This keyword is case-insensitive, and should contain just the username (e.g. Administrator,
not SOMEDOMAIN\Administrator).

Note that while this class outputs lower-case hexadecimal digests, it will accept upper-case digests as well.

Format & Algorithm

Much like lmhash and nthash, MS DCC hashes consists of a 16 byte digest, usually encoded as 32
hexadecimal characters. An example hash (of "password" with the account "Administrator") is
25fd08fa89795ed54207e6e8442a6ca0.

The digest is calculated as follows:

1. The password is encoded using UTF-16-LE.

2. The MD4 digest of step 1 is calculated. (The result of this step is identical to the nthash of the password).

3. The unicode username is converted to lowercase, and encoded using UTF-16-LE. This should be just the plain
username (e.g. User not SOMEDOMAIN\\User)

4. The username from step 3 is appended to the digest from step 2; and the MD4 digest of the result is calculated.

5. The result of step 4 is encoded into hexadecimal, this is the DCC hash.

Security Issues

This algorithm is should not be used for any purpose besides manipulating existing DCC v1 hashes, due to the follow-
ing flaws:

• Its use of the username as a salt value (and lower-case at that), means that common usernames (e.g.
Administrator) will occur more frequently as salts, weakening the effectiveness of the salt in foiling pre-
computed tables.

• The MD4 message digest has been severely compromised by collision and preimage attacks.

• Efficient brute-force attacks on MD4 exist.

3.7.6.4 passlib.hash.msdcc2 - Windows’ Domain Cached Credentials v2

New in version 1.6.

This class implements the DCC2 (Domain Cached Credentials version 2) hash, used by Windows Vista and newer
to cache and verify remote credentials when the relevant server is unavailable. It is known by a number of other
names, including “mscache2” and “mscash2” (Microsoft CAched haSH). It replaces the weaker msdcc v1 hash used
by previous releases of Windows. Security wise it is not particularly weak, but due to its use of the username as a salt,

3.7. passlib.hash - Password Hashing Schemes 143

https://docs.python.org/3/library/stdtypes.html#str

Passlib Documentation, Release 1.8.0.dev0

it should probably not be used for anything but verifying existing cached credentials. This class can be used directly
as follows:

>>> from passlib.hash import msdcc2

>>> # hash password using specified username
>>> hash = msdcc2.hash("password", user="Administrator")
>>> hash
'4c253e4b65c007a8cd683ea57bc43c76'

>>> # verify correct password
>>> msdcc2.verify("password", hash, user="Administrator")
True
>>> # verify correct password w/ wrong username
>>> msdcc2.verify("password", hash, user="User")
False
>>> # verify incorrect password
>>> msdcc2.verify("letmein", hash, user="Administrator")
False

See also:

• password hash usage – for more usage examples

• msdcc – the predecessor to this hash

Interface

class passlib.hash.msdcc2
This class implements version 2 of Microsoft’s Domain Cached Credentials password hash, and follows the
PasswordHash API.

It has a fixed number of rounds, and uses the associated username as the salt.

The hash(), genhash(), and verify() methods have the following extra keyword:

Parameters user (str) – String containing name of user account this password is associated with.
This is required to properly calculate the hash.

This keyword is case-insensitive, and should contain just the username (e.g. Administrator,
not SOMEDOMAIN\Administrator).

Format & Algorithm

Much like lmhash, nthash, and msdcc, MS DCC v2 hashes consists of a 16 byte digest, usually encoded
as 32 hexadecimal characters. An example hash (of "password" with the account "Administrator") is
4c253e4b65c007a8cd683ea57bc43c76.

The digest is calculated as follows:

1. The password is encoded using UTF-16-LE.

2. The MD4 digest of step 1 is calculated. (The result of this is identical to the nthash digest of the password).

3. The unicode username is converted to lowercase, and encoded using UTF-16-LE. This should be just the plain
username (e.g. User not SOMEDOMAIN\\User)

4. The username from step 3 is appended to the digest from step 2; and the MD4 digest of the result is calculated
(The result of this is identical to the msdcc digest).

144 Chapter 3. API Reference

https://docs.python.org/3/library/stdtypes.html#str

Passlib Documentation, Release 1.8.0.dev0

5. PBKDF2-HMAC-SHA1 is then invoked, using the result of step 4 as the secret, the username from step 3 as the
salt, 10240 rounds, and resulting in a 16 byte digest.

6. The result of step 5 is encoded into hexadecimal; this is the DCC2 hash.

Security Issues

This hash is essentially msdcc v1 with a fixed-round PBKDF2 function wrapped around it. The number of rounds of
PBKDF2 is currently sufficient to make this a semi-reasonable way to store passwords, but the use of the lowercase
username as a salt, and the fact that the rounds can’t be increased, means this hash is not particularly future-proof, and
should not be used for new applications.

Deviations

• Max Password Size

Windows appears to enforce a maximum password size, but the actual value of this limit is unclear; sources
report it to be set at assorted values from 26 to 128 characters, and it may in fact vary between Windows
releases. The one consistent piece of information is that passwords above the limit are simply not allowed
(rather than truncated ala des_crypt). Because of this, Passlib does not currently enforce a size limit: any
hashes this class generates should be correct, provided Windows is willing to accept a password of that size.

3.7.7 Cisco Hashes

Cisco IOS

The following hashes are used in various places on Cisco IOS, and are usually referred to by a Cisco-assigned “type”
code:

3.7.7.1 passlib.hash.cisco_type7 - Cisco “Type 7” hash

Danger: This is not a hash, this is a reversible plaintext encoding. This format can be trivially decoded.

New in version 1.6.

This class implements the “Type 7” password encoding used Cisco IOS. This is not actually a true hash, but a reversible
XOR Cipher encoding the plaintext password. Type 7 strings are (and were designed to be) plaintext equivalent; the
goal was to protect from “over the shoulder” eavesdropping, and little else. They can be trivially decoded. This class
can be used directly as follows:

>>> from passlib.hash import cisco_type7

>>> # encode password
>>> h = cisco_type7.hash("password")
>>> h
'044B0A151C36435C0D'

>>> # verify password
>>> cisco_type7.verify("password", h)
True
>>> pm.verify("letmein", h)

(continues on next page)

3.7. passlib.hash - Password Hashing Schemes 145

Passlib Documentation, Release 1.8.0.dev0

(continued from previous page)

False

>>> # to demonstrate this is an encoding, not a real hash,
>>> # this class supports decoding the resulting string:
>>> cisco_type7.decode(h)
"password"

See also:

the generic PasswordHash usage examples

Note: This implementation should work correctly for most cases, but may not fully implement some edge cases (see
Deviations below). Please report any issues encountered.

Interface

class passlib.hash.cisco_type7
This class implements the “Type 7” password encoding used by Cisco IOS, and follows the PasswordHash API.
It has a simple 4-5 bit salt, but is nonetheless a reversible encoding instead of a real hash.

The using() method accepts the following optional keywords:

Parameters

• salt (int) – This may be an optional salt integer drawn from range(0,16). If omitted,
one will be chosen at random.

• relaxed (bool) – By default, providing an invalid value for one of the other keywords
will result in a ValueError. If relaxed=True, and the error can be corrected, a
PasslibHashWarning will be issued instead. Correctable errors include salt values
that are out of range.

Note that while this class outputs digests in upper-case hexadecimal, it will accept lower-case as well.

This class also provides the following additional method:

classmethod decode(hash, encoding=’utf-8’)
decode hash, returning original password.

Parameters

• hash – encoded password

• encoding – optional encoding to use (defaults to UTF-8).

Returns password as unicode

Format & Algorithm

The Cisco Type 7 encoding consists of two decimal digits (encoding the salt), followed a series of hex-
adecimal characters, two for every byte in the encoded password. An example encoding (of "password")
is 044B0A151C36435C0D. This has a salt/offset of 4 (04 in the example), and encodes password via
4B0A151C36435C0D.

146 Chapter 3. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError

Passlib Documentation, Release 1.8.0.dev0

Note: The following description may not be entirely correct with respect to the official algorithm, see the Deviations
section for details.

The algorithm is a straightforward XOR Cipher:

1. The algorithm relies on the following ascii-encoded 53-byte constant:

"dsfd;kfoA,.iyewrkldJKDHSUBsgvca69834ncxv9873254k;fg87"

2. A integer salt should be generated from the range 0 .. 15. The first two characters of the encoded string are the
zero-padded decimal encoding of the salt.

3. The remaining characters of the encoded string are generated as follows: For each byte in the password (starting
with the 0th byte), the i’th byte of the password is encoded as follows:

a. let j=(i + salt) % 53

b. XOR the i’th byte of the password with the j’th byte of the magic constant.

c. encode the resulting byte as uppercase hexadecimal, and append to the encoded string.

Deviations

This implementation differs from the official one in a few ways. It may be updated as more information becomes
available.

• Unicode Policy:

Type 7 encoding is primarily used with ASCII passwords, how it handles other characters is not known.

In order to provide support for unicode strings, Passlib will encode unicode passwords using UTF-8 before
running them through this algorithm. If a different encoding is desired by an application, the password should
be encoded before handing it to Passlib.

• Magic Constant:

Other implementations contain a truncated 26-byte constant instead of the 53-byte constant listed above. How-
ever, it is likely those implementations were merely incomplete, as they exhibit other issues as well after the
26th byte is reached (throwing an error, truncating the password, outputing garbage), and only worked for shorter
passwords.

• Salt Range:

All known test vectors contain salt values in range(0,16). However, the algorithm itself should be able to
handle any salt value in range(0,53) (the size of the key). For maximum compatibility with other imple-
mentations, Passlib will accept range(0,53), but only generate salts in range(0,16).

• While this implementation handles all known test vectors, and tries to make sense of the disparate implementa-
tions, the actual algorithm has not been published by Cisco, so there may be other unknown deviations.

• passlib.hash.md5_crypt – “Type 5” hashes are actually just the standard Unix MD5-Crypt hash, the format is
identical.

• passlib.hash.cisco_type7 – “Type 7” isn’t actually a hash, but a reversible encoding designed to obscure pass-
words from idle view.

• “Type 8” hashes are based on PBKDF2-HMAC-SHA256; but not currently supported by passlib (issue 87).

• “Type 9” hashes are based on scrypt; but not currently supported by passlib (issue 87).

3.7. passlib.hash - Password Hashing Schemes 147

https://foss.heptapod.net/python-libs/passlib/issues/87
https://foss.heptapod.net/python-libs/passlib/issues/87

Passlib Documentation, Release 1.8.0.dev0

Cisco PIX & ASA

Separately from this, Cisco PIX & ASA firewalls have their own hash formats, generally identified by the “format” pa-
rameter in the username user password hash format config line they occur in. The following are known
& handled by passlib:

3.7.7.2 passlib.hash.cisco_pix - Cisco PIX MD5 hash

Danger: This algorithm is not considered secure by modern standards. It should only be used when verifying
existing hashes, or when interacting with applications that require this format. For new code, see the list of
recommended hashes.

New in version 1.6.

Overview

Todo: Caveat Emptor

Passlib’s implementations of cisco_pix and cisco_asa both need verification. For those with access to Cisco
PIX and ASA systems, verifying Passlib’s reference vectors would be a great help (see issue 51). In the mean time,
there are no guarantees that passlib correctly replicates the official implementation.

Changed in version 1.7.1: A number of bugs were fixed after expanding the reference vectors, and testing against an
ASA 9.6 system.

The cisco_asa class implements the “encrypted” password hash algorithm commonly found on Cisco ASA sys-
tems. The companion cisco_pix class implements the older variant found on Cisco PIX. Aside from internal
differences, and slightly different limitations, the two hashes have the same format, and in some cases the same out-
put.

These classes can be used directly to generate or verify a hash for a specific user. Specifying the user account name is
required for this hash:

>>> from passlib.hash import cisco_asa

>>> # hash password using specified username
>>> hash = cisco_asa.hash("password", user="user")
>>> hash
'A5XOy94YKDPXCo7U'

>>> # verify correct password
>>> cisco_asa.verify("password", hash, user="user")
True

>>> # verify correct password w/ wrong username
>>> cisco_asa.verify("password", hash, user="other")
False

>>> # verify incorrect password
>>> cisco_asa.verify("letmein", hash, user="user")
False

The main “enable” password can be hashes / verified just by omitting the user parameter, or setting user="":

148 Chapter 3. API Reference

https://foss.heptapod.net/python-libs/passlib/issues/51

Passlib Documentation, Release 1.8.0.dev0

>>> # hash password without associated user account
>>> hash2 = cisco_asa.hash("password")
>>> hash2
'NuLKvvWGg.x9HEKO'

>>> # verify password without associated user account
>>> cisco_asa.verify("password", hash2)
True

See also:

the generic PasswordHash usage examples

Interface

class passlib.hash.cisco_pix
This class implements the password hash used by older Cisco PIX firewalls, and follows the PasswordHash API.
It does a single round of hashing, and relies on the username as the salt.

This class only allows passwords <= 16 bytes, anything larger will result in a PasswordSizeError if passed
to hash(), and be silently rejected if passed to verify().

The hash(), genhash(), and verify() methods all support the following extra keyword:

Parameters user (str) – String containing name of user account this password is associated with.

This is required in order to correctly hash passwords associated with a user account on the Cisco
device, as it is used to salt the hash.

Conversely, this must be omitted or set to "" in order to correctly hash passwords which don’t
have an associated user account (such as the “enable” password).

New in version 1.6.

Changed in version 1.7.1: Passwords > 16 bytes are now rejected / throw error instead of being silently truncated,
to match Cisco behavior. A number of bugs were fixed which caused prior releases to generate unverifiable
hashes in certain cases.

class passlib.hash.cisco_asa
This class implements the password hash used by Cisco ASA/PIX 7.0 and newer (2005). Aside from a different
internal algorithm, it’s use and format is identical to the older cisco_pix class.

For passwords less than 13 characters, this should be identical to cisco_pix, but will generate a different
hash for most larger inputs (See the Format & Algorithm section for the details).

This class only allows passwords <= 32 bytes, anything larger will result in a PasswordSizeError if passed
to hash(), and be silently rejected if passed to verify().

New in version 1.7.

Changed in version 1.7.1: Passwords > 32 bytes are now rejected / throw error instead of being silently truncated,
to match Cisco behavior. A number of bugs were fixed which caused prior releases to generate unverifiable
hashes in certain cases.

Note: These hash algorithms have a context-sensitive peculiarity. They take in an optional username to salt the hash,
but have specific restrictions. . .

• The username must be provided in order to correctly hash passwords associated with a user account on the Cisco
device.

3.7. passlib.hash - Password Hashing Schemes 149

https://docs.python.org/3/library/stdtypes.html#str

Passlib Documentation, Release 1.8.0.dev0

• Conversely, the username must not be provided (or must be set to "") in order to correctly hash passwords
which don’t have an associated user account (such as the “enable” password).

Format & Algorithm

Cisco PIX & ASA hashes consist of a 12 byte digest, encoded as a 16 character HASH64-encoded string. An example
hash (of "password", with user "") is "NuLKvvWGg.x9HEKO".

The PIX / ASA digests are calculated as follows:

1. The password is encoded using UTF-8 (though entering non-ASCII characters is subject to interface-specific
issues, and may lead to problems such as double-encoding).

If the result is greater than 16 bytes (for PIX), or 32 bytes (for ASA), the password is not allowed – it will be
rejected when set, and simplify not verify during authentication.

2. If the hash is associated with a user account, append the first four bytes of the user account name to the end
of the password. If the hash is NOT associated with a user account (e.g. it’s the “enable” password), this step
should be omitted.

If the user account is 1-3 bytes, it is repeated until all 4 bytes are filled up (e.g. “usr” becomes “usru”).

For cisco_asa, this step is omitted if the password is 28 bytes or more.

3. The password+user string is truncated, or right-padded with NULLs, until it’s 16 bytes in size.

For cisco_asa, if the password+user string is 16 or more bytes, a padding size of 32 is used instead.

4. Run the result of step 3 through MD5.

5. Discard every 4th byte of the 16-byte MD5 hash, starting with the 4th byte.

6. Encode the 12-byte result using HASH64.

Changed in version 1.7.1: Updated to reflect current understanding of the algorithm.

Security Issues

This algorithm is not suitable for any use besides manipulating existing Cisco PIX hashes, due to the following flaws:

• Its use of the username as a salt value (and only the first four characters at that), means that common usernames
(e.g. admin, cisco) will occur more frequently as salts, weakening the effectiveness of the salt in foiling
pre-computed tables.

• Its truncation of the password+user combination to 16 characters additionally limits the keyspace, and the
effectiveness of the username as a salt; making pre-computed and brute force attacks much more feasible.

• Since the keyspace of password+user is still a subset of ascii characters, existing MD5 lookup tables have
an increased chance of being able to reverse common hashes.

• Its simplicity, and the weakness of MD5, makes high-speed brute force attacks much more feasible.

• Furthermore, it discards of 1/4 of MD5’s already small 16 byte digest, making collisions much more likely.

Deviations

This implementation tries to adhere to the canonical Cisco implementation, but without an official specification, there
may be other unknown deviations. The following are known issues:

150 Chapter 3. API Reference

Passlib Documentation, Release 1.8.0.dev0

• Unicode Policy:

ASA documentation4 indicates it uses UTF-8 encoding, and Passlib does as well. However, some ASA in-
terfaces have issues such as: ASDM may double-encode unicode characters, and SSH connections may drop
non-ASCII characters entirely.

• How usernames are added is not entirely pinned down. Under ASA, 3-character usernames have their last
character repeated to make a string of length 4. It is currently assumed that a similar repetition would be
applied to usernames of 1-2 characters, and that this applies to PIX as well; though neither assumption has been
confirmed.

• Passlib 1.7.1 Bugfix: Prior releases of Passlib had a number of issues with their implementation of the PIX &
ASA algorithms. As of 1.7.1, the reference vectors were greatly expanded, and then tested against an ASA 9.6
system. This revealed a number of errors in passlib’s implementation, which under the following conditions
would create hashes that were unverifiable on a Cisco system:

– PIX and ASA: Usernames containing 1-3 characters were not appended correctly (step 2, above).

– ASA omits the user entirely (step 2, above) for passwords with >= 28 characters, not >= 27. Non-enable
passwords of exactly 27 characters were previous hashed incorrectly.

– ASA’s padding size decision (step 3, above) is made after the user has been appended, not before. This
caused prior releases to incorrectly hash non-enable passwords of length 13-15.

Anyone relying on cisco_asa or cisco_pix should upgrade to Passlib 1.7.1 or newer to avoid these issues.

3.7.7.3 passlib.hash.cisco_asa - Cisco ASA MD5 hash

Danger: This algorithm is not considered secure by modern standards. It should only be used when verifying
existing hashes, or when interacting with applications that require this format. For new code, see the list of
recommended hashes.

New in version 1.7.

Todo: Caveat Emptor

Passlib’s implementations of cisco_pix and cisco_asa both need verification. For those with access to Cisco
PIX and ASA systems, verifying Passlib’s reference vectors would be a great help (see issue 51). In the mean time,
there are no guarantees that passlib correctly replicates the official implementation.

Changed in version 1.7.1: A number of bugs were fixed after expanding the reference vectors, and testing against an
ASA 9.6 system.

The cisco_asa class provides support for Cisco ASA “encrypted” hash format. This is a revision of the older
cisco_pix hash; and the usage and format is the same.

See the cisco_pix documentation page for combined details of both these classes.

• passlib.hash.cisco_pix – PIX “encrypted” hashes use a simple unsalted MD5-based algorithm.

• passlib.hash.cisco_asa – ASA “encrypted” hashes use a similar algorithm to PIX, with some minor improve-
ments.

• ASA “nt-encrypted” hashes are the same as passlib.hash.nthash, except that they use base64 encoding
rather than hexadecimal.

4 Character set used by ASA 8.4 - http://www.cisco.com/c/en/us/td/docs/security/asa/asa84/configuration/guide/asa_84_cli_config/ref_cli.html#
Supported_Character_Sets

3.7. passlib.hash - Password Hashing Schemes 151

https://foss.heptapod.net/python-libs/passlib/issues/51
http://www.cisco.com/c/en/us/td/docs/security/asa/asa84/configuration/guide/asa_84_cli_config/ref_cli.html#Supported_Character_Sets
http://www.cisco.com/c/en/us/td/docs/security/asa/asa84/configuration/guide/asa_84_cli_config/ref_cli.html#Supported_Character_Sets

Passlib Documentation, Release 1.8.0.dev0

• ASA 9.5 added support for “pbkdf2” hashes (based on PBKDF2-HMAC-SHA512); which aren’t currently
supported by passlib (issue 87).

3.7.8 Other Hashes

The following schemes are used in various contexts, but have formats or uses which cannot be easily placed in one of
the above categories:

3.7.8.1 passlib.hash.django_digest - Django-specific Hashes

The Django web framework provides a module for storing user accounts and passwords (django.contrib.
auth). This module’s password hashing code supports a few simple salted digests, stored using the format
id$salt$checksum (where id is an identifier assigned by Django). Passlib provides support for all the hashes
used up to and including Django 1.10.

Django 1.10 Hashes

Argon2

Django 1.10 added a wrapper for Argon2:

class passlib.hash.django_argon2
This class implements Django 1.10’s Argon2 wrapper, and follows the PasswordHash API.

This is identical to argon2 itself, but with the Django-specific prefix "argon2" prepended.

See argon2 for more details, the usage and behavior is identical.

This should be compatible with the hashes generated by Django 1.10’s Argon2PasswordHasher class.

New in version 1.7.

This hash has the exact same structure as passlib.hash.argon2, except that it has the prefix argon2 added.
For example, the django_argon2 hash. . . :

argon2$argon2i$v=19$m=256,t=1,p=1$c29tZXNhbHQ$AJFIsNZTMKTAewB4+ETN1A

. . . corresponds to the argon2 hash:

argon2i$v=19$m=256,t=1,p=1$c29tZXNhbHQ$AJFIsNZTMKTAewB4+ETN1A

Django 1.6 Hashes

Django 1.6 added one new hash:

Bcrypt SHA256

class passlib.hash.django_bcrypt_sha256(ident=None, **kwds)
This class implements Django 1.6’s Bcrypt+SHA256 hash, and follows the PasswordHash API.

It supports a variable-length salt, and a variable number of rounds.

152 Chapter 3. API Reference

https://foss.heptapod.net/python-libs/passlib/issues/87
http://www.djangoproject.com

Passlib Documentation, Release 1.8.0.dev0

While the algorithm and format is somewhat different, the api and options for this hash are identical to bcrypt
itself, see bcrypt for more details.

New in version 1.6.2.

This hash has the exact same structure as bcrypt, except that it has the prefix bcrypt$ added. For example, the
django_bcrypt_sha256 hash. . . :

bcrypt_sha256$$2a06/3OeRpbOf8/l6nPPRdZPp.nRiyYqPobEZGdNRBWihQhiFDh1ws1tu

. . . has the same structure as the bcrypt hash.:

$2a$06$/3OeRpbOf8/l6nPPRdZPp.nRiyYqPobEZGdNRBWihQhiFDh1ws1tu

That said, the hash is calculated slightly differently. . . the password is run through sha256(), the result encoded to
lowercase hexadecimal, and then handed to bcrypt proper. This very similar to passlib’s bcrypt_sha256, and
addresses the same set of issues.

Django 1.4 Hashes

Django 1.4 introduced a new “hashers” framework, as well as three new modern large-salt variable-cost hash algo-
rithms:

• django_pbkdf2_sha256 - a PBKDF2-HMAC-SHA256 based hash.

• django_pbkdf2_sha1 - a PBKDF2-HMAC-SHA1 based hash.

• django_bcrypt - a wrapper around bcrypt.

These classes can be used directly as follows:

>>> from passlib.hash import django_pbkdf2_sha256 as handler

>>> # hash password
>>> h = handler.hash("password")
>>> h
'pbkdf2_sha256$10000$s1w0UXDd00XB$+4ORmyvVWAQvoAEWlDgN34vlaJx1ZTZpa1pCSRey2Yk='

>>> # verify password
>>> handler.verify("password", h)
True
>>> handler.verify("eville", h)
False

See also:

the generic PasswordHash usage examples

Interface

class passlib.hash.django_pbkdf2_sha256
This class implements Django’s PBKDF2-HMAC-SHA256 hash, and follows the PasswordHash API.

It supports a variable-length salt, and a variable number of rounds.

The using() method accepts the following optional keywords:

Parameters

3.7. passlib.hash - Password Hashing Schemes 153

Passlib Documentation, Release 1.8.0.dev0

• salt (str) – Optional salt string. If not specified, a 12 character one will be autogenerated
(this is recommended). If specified, may be any series of characters drawn from the regexp
range [0-9a-zA-Z].

• salt_size (int) – Optional number of characters to use when autogenerating new salts.
Defaults to 12, but can be any positive value.

• rounds (int) – Optional number of rounds to use. Defaults to 29000, but must be within
range(1,1<<32).

• relaxed (bool) – By default, providing an invalid value for one of the other keywords
will result in a ValueError. If relaxed=True, and the error can be corrected, a
PasslibHashWarning will be issued instead. Correctable errors include rounds that
are too small or too large, and salt strings that are too long.

This should be compatible with the hashes generated by Django 1.4’s PBKDF2PasswordHasher class.

New in version 1.6.

class passlib.hash.django_pbkdf2_sha1
This class implements Django’s PBKDF2-HMAC-SHA1 hash, and follows the PasswordHash API.

It supports a variable-length salt, and a variable number of rounds.

The using() method accepts the following optional keywords:

Parameters

• salt (str) – Optional salt string. If not specified, a 12 character one will be autogenerated
(this is recommended). If specified, may be any series of characters drawn from the regexp
range [0-9a-zA-Z].

• salt_size (int) – Optional number of characters to use when autogenerating new salts.
Defaults to 12, but can be any positive value.

• rounds (int) – Optional number of rounds to use. Defaults to 131000, but must be within
range(1,1<<32).

• relaxed (bool) – By default, providing an invalid value for one of the other keywords
will result in a ValueError. If relaxed=True, and the error can be corrected, a
PasslibHashWarning will be issued instead. Correctable errors include rounds that
are too small or too large, and salt strings that are too long.

This should be compatible with the hashes generated by Django 1.4’s PBKDF2SHA1PasswordHasher class.

New in version 1.6.

passlib.hash.django_bcrypt
This class implements Django 1.4’s BCrypt wrapper, and follows the PasswordHash API.

This is identical to bcrypt itself, but with the Django-specific prefix "bcrypt$" prepended. See
passlib.hash.bcrypt - BCrypt for more details, the usage and behavior is identical.

This should be compatible with the hashes generated by Django 1.4’s BCryptPasswordHasher class.

New in version 1.6.

Format

An example django_pbkdf2_sha256 hash (of password) is:

pbkdf2_sha256$10000$s1w0UXDd00XB$+4ORmyvVWAQvoAEWlDgN34vlaJx1ZTZpa1pCSRey2Yk=

154 Chapter 3. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError

Passlib Documentation, Release 1.8.0.dev0

Both of Django’s PBKDF2 hashes have the same basic format, ident$rounds$salt$checksum, where:

• ident is an identifier (pbkdf2_sha256 in the case of the example).

• rounds is a variable cost parameter encoded in decimal.

• salt consists of (usually 12) alphanumeric digits (s1w0UXDd00XB in the example).

• checksum is the base64 encoding the PBKDF2 digest.

The digest portion is generated by passing the utf-8 encoded password, the ascii-encoded salt string, and the
number of rounds into PBKDF2 using the HMAC-SHA256 prf; and generated a 32 byte checksum, which is then
encoding using base64.

The other PBKDF2 wrapper functions similarly.

Django 1.0 Hashes

Warning: All of the following hashes are very susceptible to brute-force attacks; since they are simple single-
round salted digests. They should not be used for any purpose besides manipulating existing Django password
hashes.

Django 1.0 supports some basic salted digests, as well as some legacy hashes:

• django_salted_sha1 - simple salted SHA1 digest, Django 1.0-1.3’s default.

• django_salted_md5 - simple salted MD5 digest.

• django_des_crypt - support for legacy des_crypt hashes, shoehorned into Django’s hash format.

These classes can be used directly as follows:

>>> from passlib.hash import django_salted_sha1 as handler

>>> # hash password
>>> h = handler.hash("password")
>>> h
'sha1$c6218$161d1ac8ab38979c5a31cbaba4a67378e7e60845'

>>> # verify password
>>> handler.verify("password", h)
True
>>> handler.verify("eville", h)
False

See also:

the generic PasswordHash usage examples

Interface

class passlib.hash.django_salted_md5
This class implements Django’s Salted MD5 hash, and follows the PasswordHash API.

It supports a variable-length salt, and uses a single round of MD5.

The hash() and genconfig() methods accept the following optional keywords:

3.7. passlib.hash - Password Hashing Schemes 155

Passlib Documentation, Release 1.8.0.dev0

Parameters

• salt (str) – Optional salt string. If not specified, a 12 character one will be autogenerated
(this is recommended). If specified, may be any series of characters drawn from the regexp
range [0-9a-zA-Z].

• salt_size (int) – Optional number of characters to use when autogenerating new salts.
Defaults to 12, but can be any positive value.

This should be compatible with the hashes generated by Django 1.4’s MD5PasswordHasher class.

class passlib.hash.django_salted_sha1
This class implements Django’s Salted SHA1 hash, and follows the PasswordHash API.

It supports a variable-length salt, and uses a single round of SHA1.

The hash() and genconfig() methods accept the following optional keywords:

Parameters

• salt (str) – Optional salt string. If not specified, a 12 character one will be autogenerated
(this is recommended). If specified, may be any series of characters drawn from the regexp
range [0-9a-zA-Z].

• salt_size (int) – Optional number of characters to use when autogenerating new salts.
Defaults to 12, but can be any positive value.

This should be compatible with Django 1.4’s SHA1PasswordHasher class.

Format

An example django_salted_sha1 hash (of password) is:

sha1$f8793$c4cd18eb02375a037885706d414d68d521ca18c7

Both of Django’s salted hashes have the same basic format, ident$salt$checksum, where:

• ident is an identifier (sha1 in the case of the example, md5 for django_salted_md5).

• salt consists of (usually 5) lowercase hexadecimal digits (f8793 in the example).

• checksum is lowercase hexadecimal encoding of the checksum.

The checksum is generated by concatenating the salt digits followed by the password, and hashing them using the
specified digest (MD5 or SHA-1). The digest is then encoded to hexadecimal. If the password is unicode, it is
converted to utf-8 first.

Security Issues

Django’s salted hashes should not be considered very secure.

• They use only a single round of digests with known collision and pre-image attacks (SHA1 & MD5).

• While it could be increased, they currently use only 20 bits of entropy in their salt, which is borderline insuffi-
cient to defeat rainbow tables.

• They digest the encoded hexadecimal salt, not the raw bytes, increasing the odds that a particular salt+password
string will be present in a pre-computed tables of ascii digests.

156 Chapter 3. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Passlib Documentation, Release 1.8.0.dev0

Des Crypt Wrapper

class passlib.hash.django_des_crypt
This class implements Django’s des_crypt wrapper, and follows the PasswordHash API.

It supports a fixed-length salt.

The hash() and genconfig() methods accept the following optional keywords:

Parameters

• salt (str) – Optional salt string. If not specified, one will be autogenerated (this is
recommended). If specified, it must be 2 characters, drawn from the regexp range [./
0-9A-Za-z].

• truncate_error (bool) – By default, django_des_crypt will silently truncate pass-
words larger than 8 bytes. Setting truncate_error=True will cause hash() to raise
a PasswordTruncateError instead.

New in version 1.7.

This should be compatible with the hashes generated by Django 1.4’s CryptPasswordHasher class. Note
that Django only supports this hash on Unix systems (though django_des_crypt is available cross-platform
under Passlib).

Changed in version 1.6: This class will now accept hashes with empty salt strings, since Django 1.4 generates
them this way.

Format

An example django_des_crypt hash (of password) is crypt$cd1a4$cdlRbNJGImptk; the general for-
mat is the same as the salted hashes: ident$salt$checksum, where:

• ident is the identifier crypt.

• salt is 5 lowercase hexadecimal digits (cd1a4 in the example).

• checksum is a des_crypt hash (cdlRbNJGImptk in the example).

It should be noted that this class essentially just shoe-horns des_crypt into a format compatible with the Django
salted hashes (above). It has a few quirks, such as the fact that only the first two characters of the salt are used by
des_crypt, and they are in turn duplicated as the first two characters of the checksum.

For security issues relating to django_des_crypt, see des_crypt.

Other Hashes

class passlib.hash.django_disabled
This class provides disabled password behavior for Django, and follows the PasswordHash API.

This class does not implement a hash, but instead claims the special hash string "!" which Django uses to
indicate an account’s password has been disabled.

• newly encrypted passwords will hash to "!".

• it rejects all passwords.

Note: Django 1.6 prepends a randomly generated 40-char alphanumeric string to each unusuable password.
This class recognizes such strings, but for backwards compatibility, still returns "!".

3.7. passlib.hash - Password Hashing Schemes 157

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Passlib Documentation, Release 1.8.0.dev0

See https://code.djangoproject.com/ticket/20079 for why Django appends an alphanumeric string.

Changed in version 1.6.2: added Django 1.6 support

Changed in version 1.7: started appending an alphanumeric string.

Note: Some older (pre-1.0) versions of Django encoded passwords using hex_md5, though this has been deprecated
by Django, and should become increasingly rare.

3.7.8.2 passlib.hash.grub_pbkdf2_sha512 - Grub’s PBKDF2 Hash

This class provides an implementation of Grub’s PBKDF2-HMAC-SHA512 password hash1, as generated by the
grub-mkpasswd-pbkdf2 command, and may be found in Grub2 configuration files. PBKDF2 is a key derivation
function2 that is ideally suited as the basis for a password hash, as it provides variable length salts, variable number of
rounds.

See also:

• password hash usage – for examples of how to use this class via the common hash interface.

• passlib.hash.pbkdf2_{digest} – for some other PBKDF2-based hashes.

Interface

class passlib.hash.grub_pbkdf2_sha512
This class implements Grub’s pbkdf2-hmac-sha512 hash, and follows the PasswordHash API.

It supports a variable-length salt, and a variable number of rounds.

The using() method accepts the following optional keywords:

Parameters

• salt (bytes) – Optional salt bytes. If specified, the length must be between 0-1024 bytes.
If not specified, a 64 byte salt will be autogenerated (this is recommended).

• salt_size (int) – Optional number of bytes to use when autogenerating new salts.
Defaults to 64 bytes, but can be any value between 0 and 1024.

• rounds (int) – Optional number of rounds to use. Defaults to 19000, but must be within
range(1,1<<32).

• relaxed (bool) – By default, providing an invalid value for one of the other keywords
will result in a ValueError. If relaxed=True, and the error can be corrected, a
PasslibHashWarning will be issued instead. Correctable errors include rounds that
are too small or too large, and salt strings that are too long.

New in version 1.6.

Format & Algorithm

A example hash (of password) is
1 Information about Grub’s password hashes - http://grub.enbug.org/Authentication.
2 The specification for the PBKDF2 algorithm - http://tools.ietf.org/html/rfc2898#section-5.2.

158 Chapter 3. API Reference

https://code.djangoproject.com/ticket/20079
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
http://grub.enbug.org/Authentication
http://tools.ietf.org/html/rfc2898#section-5.2

Passlib Documentation, Release 1.8.0.dev0

grub.pbkdf2.sha512.10000.4483972AD2C52E1F590B3E2260795FDA9CA0B07B
96FF492814CA9775F08C4B59CD1707F10B269E09B61B1E2D11729BCA8D62B7827
B25B093EC58C4C1EAC23137.DF4FCB5DD91340D6D31E33423E4210AD47C7A4DF9
FA16F401663BF288C20BF973530866178FE6D134256E4DBEFBD984B652332EED3
ACAED834FEA7B73CAE851D

All of this scheme’s hashes have the format grub.pbkdf2.sha512.rounds.salt.checksum, where
rounds is the number of iteration stored in decimal, salt is the salt string encoded using upper-case hexadeci-
mal, and checksum is the resulting 64-byte derived key, also encoded in upper-case hexadecimal. It can be identified
by the prefix grub.pdkdf2.sha512..

The algorithm used is the same as pbkdf2_sha1: the password is encoded into UTF-8 if not already encoded, and
passed through pbkdf1() along with the decoded salt, and the number of rounds. The result is then encoded into
hexadecimal.

3.7.8.3 passlib.hash.hex_digest - Generic Hexadecimal Digests

Danger: Using a single round of any cryptographic hash (especially without a salt) is so insecure that it’s barely
better than plaintext. Do not use these schemes in new applications.

Some existing applications store passwords by storing them using hexadecimal-encoded message digests, such as
MD5 or SHA1. Such schemes are extremely vulnerable to pre-computed brute-force attacks, and should not be used
in new applications. However, for the sake of backwards compatibility when converting existing applications, Passlib
provides wrappers for few of the common hashes. These classes all wrap the underlying hashlib implementations, and
can be used directly as follows:

>>> from passlib.hash import hex_sha1 as hex_sha1

>>> # hash password
>>> h = hex_sha1.hash("password")
>>> h
'5baa61e4c9b93f3f0682250b6cf8331b7ee68fd8'

>>> # verify correct password
>>> hex_sha1.verify("password", h)
True

>>> # verify incorrect password
>>> hex_sha1.verify("secret", h)
False

See also:

the generic PasswordHash usage examples

Interface

class passlib.hash.hex_md4

class passlib.hash.hex_md5

class passlib.hash.hex_sha1

class passlib.hash.hex_sha256

3.7. passlib.hash - Password Hashing Schemes 159

Passlib Documentation, Release 1.8.0.dev0

class passlib.hash.hex_sha512
Each of these classes implements a plain hexadecimal encoded message digest, using the relevant digest function
from hashlib, and following the PasswordHash API.

They support no settings or other keywords.

Note: Oracle VirtualBox’s VBoxManager internalcommands passwordhash command uses
hex_sha256.

Format & Algorithm

All of these classes just report the result of the specified digest, encoded as a series of lowercase hexadecimal charac-
ters; though upper case is accepted as input.

3.7.8.4 passlib.hash.plaintext - Plaintext

This class stores passwords in plaintext. This is, of course, ridiculously insecure; it is provided for backwards compat-
ibility when migrating existing applications. It should not be used for any other purpose. This class should always be
the last algorithm checked, as it will recognize all hashes. It can be used directly as follows:

>>> from passlib.hash import plaintext as plaintext

>>> # "encrypt" password
>>> plaintext.hash("password")
'password'

>>> # verify password
>>> plaintext.verify("password", "password")
True
>>> plaintext.verify("secret", "password")
False

See also:

• password hash usage – for more usage examples

• ldap_plaintext – on LDAP systems, this format is probably more appropriate for storing plaintext pass-
words.

Interface

class passlib.hash.plaintext
This class stores passwords in plaintext, and follows the PasswordHash API.

The hash(), genhash(), and verify() methods all require the following additional contextual keyword:

Parameters encoding (str) – This controls the character encoding to use (defaults to utf-8).

This encoding will be used to encode str passwords under Python 2, and decode bytes hashes
under Python 3.

Changed in version 1.6: The encoding keyword was added.

160 Chapter 3. API Reference

https://docs.python.org/3/library/stdtypes.html#str

Passlib Documentation, Release 1.8.0.dev0

3.8 passlib.hosts - OS Password Handling

This module provides some preconfigured CryptContext instances for hashing & verifying password hashes tied to
user accounts of various operating systems. While (most) of the objects are available cross-platform, their use is
oriented primarily towards Linux and BSD variants.

See also:

for Microsoft Windows, see the list of MS Windows Hashes in passlib.hash.

3.8.1 Usage Example

The CryptContext class itself has a large number of features, but to give an example of how to quickly use the
instances in this module:

Each of the objects in this module can be imported directly:

>>> # as an example, this imports the linux_context object,
>>> # which is configured to recognized most hashes found in Linux /etc/shadow files.
>>> from passlib.apps import linux_context

Hashing a password is simple (and salt generation is handled automatically):

>>> hash = linux_context.hash("toomanysecrets")
>>> hash
'5rounds=84740$fYChCy.52EzebF51$9bnJrmTf2FESI93hgIBFF4qAfysQcKoB0veiI0ZeYU4'

Verifying a password against an existing hash is just as quick:

>>> linux_context.verify("toomanysocks", hash)
False
>>> linux_context.verify("toomanysecrets", hash)
True

You can also identify hashes::

>>> linux_context.identify(hash)
'sha512_crypt'

Or encrypt using a specific algorithm::

>>> linux_context.schemes()
('sha512_crypt', 'sha256_crypt', 'md5_crypt', 'des_crypt', 'unix_disabled')
>>> linux_context.hash("password", scheme="des_crypt")
'2fmLLcoHXuQdI'
>>> linux_context.identify('2fmLLcoHXuQdI')
'des_crypt'

See also:

the CryptContext Tutorial and CryptContext Reference for more information about the CryptContext class.

3.8.2 Unix Password Hashes

Passlib provides a number of pre-configured CryptContext instances which can identify and manipulate all the
formats used by Linux and BSD. See the modular crypt identifier list for a complete list of which hashes are supported

3.8. passlib.hosts - OS Password Handling 161

Passlib Documentation, Release 1.8.0.dev0

by which operating system.

3.8.2.1 Predefined Contexts

Passlib provides CryptContext instances for the following Unix variants:

passlib.hosts.linux_context
context instance which recognizes hashes used by the majority of Linux distributions. encryption defaults to
sha512_crypt.

passlib.hosts.freebsd_context
context instance which recognizes all hashes used by FreeBSD 8. encryption defaults to bcrypt.

passlib.hosts.netbsd_context
context instance which recognizes all hashes used by NetBSD. encryption defaults to bcrypt.

passlib.hosts.openbsd_context
context instance which recognizes all hashes used by OpenBSD. encryption defaults to bcrypt.

Note: All of the above contexts include the unix_disabled handler as a final fallback. This special handler treats
all strings as invalid passwords, particularly the common strings ! and * which are used to indicate that an account
has been disabled1.

3.8.2.2 Current Host OS

passlib.hosts.host_context

Platform Unix

This CryptContext instance should detect and support all the algorithms the native OS crypt() offers.
The main differences between this object and crypt():

• this object provides introspection about which schemes are available on a given system (via
host_context.schemes()).

• it defaults to the strongest algorithm available, automatically configured to an appropriate strength for
hashing new passwords.

• whereas crypt() typically defaults to using des_crypt; and provides little introspection.

As an example, this can be used in conjunction with stdlib’s spwd module to verify user passwords on the local
system:

>>> # NOTE/WARNING: this example requires running as root on most systems.
>>> import spwd, os
>>> from passlib.hosts import host_context
>>> hash = spwd.getspnam(os.environ['USER']).sp_pwd
>>> host_context.verify("toomanysecrets", hash)
True

Changed in version 1.4: This object is only available on systems where the stdlib crypt module is present. In
version 1.3 and earlier, it was available on non-Unix systems, though it did nothing useful.

1 Man page for Linux /etc/shadow - http://linux.die.net/man/5/shadow

162 Chapter 3. API Reference

http://linux.die.net/man/5/shadow

Passlib Documentation, Release 1.8.0.dev0

3.9 passlib.ifc – Password Hash Interface

3.9.1 PasswordHash API

This module provides the PasswordHash abstract base class. This class defines the common methods and attributes
present on all the hashes importable from the passlib.hash module. Additionally, the passlib.context.
CryptContext class is deliberately designed to parallel many of this interface’s methods.

See also:

PasswordHash Tutorial – Overview of this interface and how to use it.

3.9.2 Base Abstract Class

class passlib.ifc.PasswordHash
This class provides an abstract interface for an arbitrary password hasher.

Applications will generally not construct instances directly – most of the operations are performed via class-
methods, allowing instances of a given class to be an internal detail used to implement the various operations.

While PasswordHash offers a number of methods and attributes, most applications will only need the two
primary methods:

• PasswordHash.hash() - generate new salt, return hash of password.

• PasswordHash.verify() - verify password against existing hash.

Two additional support methods are also provided:

• PasswordHash.using() - create subclass with customized configuration.

• PasswordHash.identify() - check if hash belongs to this algorithm.

Each hash algorithm also provides a number of informational attributes, allowing programmatic inspection of
its options and parameter limits.

See also:

PasswordHash Tutorial – Overview of this interface and how to use it.

3.9.3 Hashing & Verification Methods

Most applications will only need to use two methods: PasswordHash.hash() to generate new hashes, and
PasswordHash.verify() to check passwords against existing hashes. These methods provide an easy inter-
face for working with a password hash, and abstract away details such as salt generation, hash normalization, and hash
comparison.

classmethod PasswordHash.hash(secret, **kwds)
Digest password using format-specific algorithm, returning resulting hash string.

For most hashes supported by Passlib, the returned string will contain: an algorithm identifier, a cost parameter,
the salt string, and finally the password digest itself.

Parameters

• secret (unicode or bytes) – string containing the password to encode.

3.9. passlib.ifc – Password Hash Interface 163

https://docs.python.org/3/library/stdtypes.html#bytes

Passlib Documentation, Release 1.8.0.dev0

• **kwds – All additional keywords are algorithm-specific, and will be listed in that
hash’s documentation; though many of the more common keywords are listed under
PasswordHash.setting_kwds and PasswordHash.context_kwds.

Deprecated since version 1.7: Passing PasswordHash.setting_kwds such as
rounds and salt_size directly into the hash() method is deprecated. Callers should
instead use handler.using(**settings).hash(secret). Support for the old
method is is tentatively scheduled for removal in Passlib 2.0.

Context keywords such as user should still be provided to hash().

Returns Resulting password hash, encoded in an algorithm-specific format. This will always be an
instance of str (i.e. unicode under Python 3, ascii-encoded bytes under Python 2).

Raises

• ValueError –

– If a kwd’s value is invalid (e.g. if a salt string is too small, or a rounds value is out
of range).

– If secret contains characters forbidden by the hash algorithm (e.g. des_crypt for-
bids NULL characters).

• TypeError –

– if secret is not unicode or bytes.

– if a kwd argument has an incorrect type.

– if an algorithm-specific required kwd is not provided.

Changed in version 1.6: Hashes now raise TypeError if a required keyword is missing, rather than
ValueError like in previous releases; in order to conform with normal Python behavior.

Changed in version 1.6: Passlib is now much stricter about input validation: for example, out-of-range rounds
values now cause an error instead of being clipped (though applications may set relaxed=True to restore the old
behavior).

Changed in version 1.7: This method was renamed from encrypt(). Deprecated support for passing settings
directly into hash().

classmethod PasswordHash.encrypt(secret, **kwds)
Legacy alias for PasswordHash.hash().

Deprecated since version 1.7: This method was renamed to hash() in version 1.7. This alias will be removed
in version 2.0, and should only be used for compatibility with Passlib 1.3 - 1.6.

classmethod PasswordHash.verify(secret, hash, **context_kwds)
Verify a secret using an existing hash.

This checks if a secret matches against the one stored inside the specified hash.

Parameters

• secret (unicode or bytes) – A string containing the password to check.

• hash – A string containing the hash to check against, such as returned by
PasswordHash.hash().

Hashes may be specified as unicode or ascii-encoded bytes.

• **kwds – Very few hashes will have additional keywords.

The ones that do typically require external contextual information in order to calculate
the digest. For these hashes, the values must match the ones passed to the original

164 Chapter 3. API Reference

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#bytes

Passlib Documentation, Release 1.8.0.dev0

PasswordHash.hash() call when the hash was generated, or the password will not
verify.

These additional keywords are algorithm-specific, and will be listed in that hash’s doc-
umentation; though the more common keywords are listed under PasswordHash.
context_kwds. Examples of common keywords include user.

Returns True if the secret matches, otherwise False.

Raises

• TypeError –

– if either secret or hash is not a unicode or bytes instance.

– if the hash requires additional kwds which are not provided,

– if a kwd argument has the wrong type.

• ValueError –

– if hash does not match this algorithm’s format.

– if the secret contains forbidden characters (see PasswordHash.hash()).

– if a configuration/salt string generated by PasswordHash.genconfig() is passed
in as the value for hash (these strings look similar to a full hash, but typically lack the
digest portion needed to verify a password).

Changed in version 1.6: This function now raises ValueError if None or a config string is provided instead
of a properly-formed hash; previous releases were inconsistent in their handling of these two border cases.

See also:

• Hashing & Verifying tutorial for a usage example

3.9.4 Crypt Methods

Taken together, the PasswordHash.genconfig() and PasswordHash.genhash() are two tightly-coupled
methods that mimic the standard Unix “crypt” interface. The first method generates salt / configuration strings from a
set of settings, and the second hashes the password using the provided configuration string.

See also:

Most applications will find PasswordHash.hash() much more useful, as it combines the functionality of these
two methods into one.

classmethod PasswordHash.genconfig(**setting_kwds)
Deprecated since version 1.7: As of 1.7, this method is deprecated, and slated for complete removal in Passlib
2.0.

For all known real-world uses, .hash("", **settings) should provide equivalent functionality.

This deprecation may be reversed if a use-case presents itself in the mean time.

Returns a configuration string encoding settings for hash generation.

This function takes in all the same PasswordHash.setting_kwds as PasswordHash.hash(),
fills in suitable defaults, and encodes the settings into a single “configuration” string, suitable passing to
PasswordHash.genhash().

3.9. passlib.ifc – Password Hash Interface 165

https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

Passlib Documentation, Release 1.8.0.dev0

Parameters **kwds – All additional keywords are algorithm-specific, and will be listed in
that hash’s documentation; though many of the more common keywords are listed un-
der PasswordHash.setting_kwds Examples of common keywords include salt and
rounds.

Returns A configuration string (as str).

Raises ValueError, TypeError – This function raises exceptions for the same reasons as
PasswordHash.hash().

Changed in version 1.7: This should now always return a full hash string, even in cases where previous releases
would return a truncated “configuration only” string, or None.

classmethod PasswordHash.genhash(secret, config, **context_kwds)
Encrypt secret using specified configuration string.

Deprecated since version 1.7: As of 1.7, this method is deprecated, and slated for complete removal in Passlib
2.0.

This deprecation may be reversed if a use-case presents itself in the mean time.

This takes in a password and a configuration string, and returns a hash for that password.

Parameters

• secret (unicode or bytes) – string containing the password to be encrypted.

• config (unicode or bytes) – configuration string to use when hashing the secret.
this can either be an existing hash that was previously returned by PasswordHash.
genhash(), or a configuration string that was previously created by PasswordHash.
genconfig().

Changed in version 1.7: None is no longer accepted for hashes which (prior to 1.7) lacked
a configuration string format.

• **kwds – Very few hashes will have additional keywords.

The ones that do typically require external contextual information in order to calculate
the digest. For these hashes, the values must match the ones passed to the original
PasswordHash.hash() call when the hash was generated, or the password will not
verify.

These additional keywords are algorithm-specific, and will be listed in that hash’s doc-
umentation; though the more common keywords are listed under :PasswordHash.
context_kwds. Examples of common keywords include user.

Returns Encoded hash matching specified secret, config, and kwds. This will always be a native
str instance.

Raises ValueError, TypeError – This function raises exceptions for the same reasons as
PasswordHash.hash().

Warning: Traditionally, password verification using the “crypt” interface was done by testing if hash ==
genhash(password, hash). This test is only reliable for a handful of algorithms, as various hash
representation issues may cause false results. Applications are strongly urged to use verify() instead.

3.9.5 Factory Creation

One powerful method offered by the PasswordHash class PasswordHash.using(). This method allows you
to quickly create subclasses of a specific hash, providing it with preconfigured defaults specific to your application:

166 Chapter 3. API Reference

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#TypeError

Passlib Documentation, Release 1.8.0.dev0

classmethod PasswordHash.using(relaxed=False, **settings)
This method takes in a set of algorithm-specific settings, and returns a new handler object which uses the
specified default settings instead.

Parameters **settings – All keywords are algorithm-specific, and will be listed in that
hash’s documentation; though many of the more common keywords are listed under
PasswordHash.setting_kwds. Examples of common keywords include rounds and
salt_size.

Returns A new object which adheres to PasswordHash api.

Raises

• ValueError –

– If a keywords’s value is invalid (e.g. if a salt string is too small, or a rounds value is
out of range).

• TypeError –

– if a kwd argument has an incorrect type.

New in version 1.7.

See also:

Customizing the Configuration tutorial for a usage example

3.9.6 Hash Inspection Methods

There are currently two hash inspection methods, PasswordHash.identify() and PasswordHash.
needs_update().

classmethod PasswordHash.identify(hash)
Quickly identify if a hash string belongs to this algorithm.

Parameters hash (unicode or bytes) – the candidate hash string to check

Returns

• True if the input is a configuration string or hash string identifiable as belonging to
this scheme (even if it’s malformed).

• False if the input does not belong to this scheme.

Raises TypeError – if hash is not a unicode or bytes instance.

Note: A small number of the hashes supported by Passlib lack a reliable method of identification (e.g. lmhash
and nthash both consist of 32 hexadecimal characters, with no distinguishing features). For such hashes, this
method may return false positives.

See also:

If you are considering using this method to select from multiple algorithms (e.g. in order to verify a password),
you will be better served by the CryptContext class.

classmethod PasswordHash.needs_update(hash, secret=None)
check if hash’s configuration is outside desired bounds, or contains some other internal option which requires
updating the password hash.

Parameters

3.9. passlib.ifc – Password Hash Interface 167

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/exceptions.html#TypeError

Passlib Documentation, Release 1.8.0.dev0

• hash – hash string to examine

• secret – optional secret known to have verified against the provided hash. (this is used by
some hashes to detect legacy algorithm mistakes).

Returns whether secret needs re-hashing.

New in version 1.7.

3.9.7 General Informational Attributes

Each hash provides a handful of informational attributes, allowing programs to dynamically adapt to the requirements
of different hash algorithms. The following attributes should be defined for all the hashes in passlib:

PasswordHash.name
Name uniquely identifying this hash.

For the hashes built into Passlib, this will always match the location where it was imported from — passlib.
hash.name — though externally defined hashes may not adhere to this.

This should always be a str consisting of lowercase a-z, the digits 0-9, and the underscore character _.

PasswordHash.setting_kwds
Tuple listing the keywords supported by PasswordHash.using() control hash generation, and which will
be encoded into the resulting hash.

(These keywords will also be accepted by PasswordHash.hash() and PasswordHash.genconfig(),
though that behavior is deprecated as of Passlib 1.7; and will be removed in Passlib 2.0).

This list commonly includes keywords for controlling salt generation, adjusting time-cost parameters, etc. Most
of these settings are optional, and suitable defaults will be chosen if they are omitted (e.g. salts will be autogen-
erated).

While the documentation for each hash should have a complete list of the specific settings the hash uses, the
following keywords should have roughly the same behavior for all the hashes that support them:

salt Specifies a fixed salt string to use, rather than randomly generating one.

This option is supported by most of the hashes in Passlib, though typically it isn’t used, as random gener-
ation of a salt is usually the desired behavior.

Hashes typically require this to be a unicode or bytes instance, with additional constraints appropriate
to the algorithm.

salt_size

Most algorithms which support the salt setting will autogenerate a salt when none is provided.
Most of those hashes will also offer this option, which allows the caller to specify the size of salt
which should be generated. If omitted, the hash’s default salt size will be used.

See also:

the salt info attributes (below)

rounds If present, this means the hash can vary the number of internal rounds used in some part of its algo-
rithm, allowing the calculation to take a variable amount of processor time, for increased security.

While this is almost always a non-negative integer, additional constraints may be present for each algorithm
(such as the cost varying on a linear or logarithmic scale).

This value is typically omitted, in which case a default value will be used. The defaults for all the hashes
in Passlib are periodically retuned to strike a balance between security and responsiveness.

168 Chapter 3. API Reference

Passlib Documentation, Release 1.8.0.dev0

See also:

the rounds info attributes (below)

ident If present, the class supports multiple formats for encoding the same hash. The class’s documentation
will generally list the allowed values, allowing alternate output formats to be selected.

Note that these values will typically correspond to different revision of the hash algorithm itself, and they
may not all offer the same level of security.

truncate_error

This will be present if and only if the hash truncates passwords larger than some limit (reported
via it’s truncate_size attribute). By default, they will silently truncate passwords above
their limit. Setting truncate_error=True will cause PasswordHash.hash() to raise a
PasswordTruncateError instead.

relaxed By default, passing an invalid value to PasswordHash.using() will result in a ValueError.
However, if relaxed=True then Passlib will attempt to correct the error and (if successful) issue a
PasslibHashWarning instead. This warning may then be filtered if desired. Correctable errors in-
clude (but are not limited to): rounds and salt_size values that are too low or too high, salt strings
that are too large.

New in version 1.6.

PasswordHash.context_kwds
Tuple listing the keywords supported by PasswordHash.hash(), PasswordHash.verify(), and
PasswordHash.genhash(). These keywords are different from the settings kwds in that the context key-
words affect the hash, but are not encoded within it, and thus must be provided each time the hash is calculated.

This list commonly includes a user account, http realm identifier, etc. Most of these keywords are required by
the hashes which support them, as they are frequently used in place of an embedded salt parameter.

Most hash algorithms in Passlib will have no context keywords.

While the documentation for each hash should have a complete list of the specific context keywords the hash
uses, the following keywords should have roughly the same behavior for all the hashes that support them:

user

If present, the class requires a username be specified whenever performing a hash calculation (e.g.
postgres_md5 and oracle10).

encoding

Some hashes have poorly-defined or host-dependant unicode behavior, and properly hashing a non-
ASCII password requires providing the correct encoding (lmhash is perhaps the worst offender).
Hashes which provide this keyword will always expose their default encoding programmatically via
the PasswordHash.default_encoding attribute.

passlib.ifc.truncate_size
A positive integer, indicating the hash will truncate any passwords larger than this many bytes. If None (the
more common case), indicates the hash will use the entire password provided.

Hashes which specify this setting will also support a truncate_error flag via their PasswordHash.
using() method, to configure how truncation is handled.

See also:

Customizing the Configuration tutorial for a usage example

3.9. passlib.ifc – Password Hash Interface 169

https://docs.python.org/3/library/exceptions.html#ValueError

Passlib Documentation, Release 1.8.0.dev0

3.9.8 Salt Information Attributes

For schemes which support a salt string, "salt" should be listed in their PasswordHash.setting_kwds, and
the following attributes should be defined:

PasswordHash.max_salt_size
The maximum number of bytes/characters allowed in the salt. Should either be a positive integer, or None
(indicating the algorithm has no effective upper limit).

PasswordHash.min_salt_size
The minimum number of bytes/characters required for the salt. Must be an integer between 0 and
PasswordHash.max_salt_size.

PasswordHash.default_salt_size
The default salt size that will be used when generating a salt, assuming salt_size is not set explicitly. This
is typically the same as max_salt_size, or a sane default if max_salt_size=None.

PasswordHash.salt_chars
A unicode string containing all the characters permitted in a salt string.

For most Modular Crypt Format hashes, this is equal to passlib.utils.binary.HASH64_CHARS. For
the rare hashes where the salt parameter must be specified in bytes, this will be a placeholder bytes object
containing all 256 possible byte values.

3.9.9 Rounds Information Attributes

For schemes which support a variable time-cost parameter, "rounds" should be listed in their PasswordHash.
setting_kwds, and the following attributes should be defined:

PasswordHash.max_rounds
The maximum number of rounds the scheme allows. Specifying a value beyond this will result in a
ValueError. This will be either a positive integer, or None (indicating the algorithm has no effective upper
limit).

PasswordHash.min_rounds
The minimum number of rounds the scheme allows. Specifying a value below this will result in a ValueError.
Will always be an integer between 0 and PasswordHash.max_rounds.

PasswordHash.default_rounds
The default number of rounds that will be used if none is explicitly provided to PasswordHash.
hash(). This will always be an integer between PasswordHash.min_rounds and PasswordHash.
max_rounds.

PasswordHash.rounds_cost
While the cost parameter rounds is an integer, how it corresponds to the amount of time taken can vary
between hashes. This attribute indicates the scale used by the hash:

• "linear" - time taken scales linearly with rounds value (e.g. sha512_crypt)

• "log2" - time taken scales exponentially with rounds value (e.g. bcrypt)

Todo: document the additional PasswordHash.using() keywords available for setting rounds limits.

170 Chapter 3. API Reference

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

Passlib Documentation, Release 1.8.0.dev0

3.10 passlib.pwd – Password generation helpers

New in version 1.7.

3.10.1 Password Generation

Warning: Before using these routines, make sure your system’s RNG entropy pool is secure and full. Also make
sure that genword() or genphrase() is called with a sufficiently high entropy parameter the intended
purpose of the password.

passlib.pwd.genword(entropy=None, length=None, charset="ascii_62", chars=None, returns=None)
Generate one or more random passwords.

This function uses random.SystemRandom to generate one or more passwords using various character sets.
The complexity of the password can be specified by size, or by the desired amount of entropy.

Usage Example:

>>> # generate a random alphanumeric string with 48 bits of entropy (the default)
>>> from passlib import pwd
>>> pwd.genword()
'DnBHvDjMK6'

>>> # generate a random hexadecimal string with 52 bits of entropy
>>> pwd.genword(entropy=52, charset="hex")
'310f1a7ac793f'

Parameters

• entropy – Strength of resulting password, measured in ‘guessing entropy’ bits. An appro-
priate length value will be calculated based on the requested entropy amount, and the size
of the character set.

This can be a positive integer, or one of the following preset strings: "weak" (24), "fair"
(36), "strong" (48), and "secure" (56).

If neither this or length is specified, entropy will default to "strong" (48).

• length – Size of resulting password, measured in characters. If omitted, the size is auto-
calculated based on the entropy parameter.

If both entropy and length are specified, the stronger value will be used.

• returns – Controls what this function returns:

– If None (the default), this function will generate a single password.

– If an integer, this function will return a list containing that many passwords.

– If the iter constant, will return an iterator that yields passwords.

• chars – Optionally specify custom string of characters to use when randomly generating
a password. This option cannot be combined with charset.

• charset – The predefined character set to draw from (if not specified by chars). There
are currently four presets available:

3.10. passlib.pwd – Password generation helpers 171

Passlib Documentation, Release 1.8.0.dev0

– "ascii_62" (the default) – all digits and ascii upper & lowercase letters. Provides
~5.95 entropy per character.

– "ascii_50" – subset which excludes visually similar characters (1IiLl0Oo5S8B).
Provides ~5.64 entropy per character.

– "ascii_72" – all digits and ascii upper & lowercase letters, as well as some punctua-
tion. Provides ~6.17 entropy per character.

– "hex" – Lower case hexadecimal. Providers 4 bits of entropy per character.

Returns str string containing randomly generated password; or list of 1+ passwords if
returns=int is specified.

passlib.pwd.genphrase(entropy=None, length=None, wordset="eff_long", words=None, sep=" ", re-
turns=None)

Generate one or more random password / passphrases.

This function uses random.SystemRandom to generate one or more passwords; it can be configured to
generate alphanumeric passwords, or full english phrases. The complexity of the password can be specified by
size, or by the desired amount of entropy.

Usage Example:

>>> # generate random phrase with 48 bits of entropy
>>> from passlib import pwd
>>> pwd.genphrase()
'gangly robbing salt shove'

>>> # generate a random phrase with 52 bits of entropy
>>> # using a particular wordset
>>> pwd.genword(entropy=52, wordset="bip39")
'wheat dilemma reward rescue diary'

Parameters

• entropy – Strength of resulting password, measured in ‘guessing entropy’ bits. An appro-
priate length value will be calculated based on the requested entropy amount, and the size
of the word set.

This can be a positive integer, or one of the following preset strings: "weak" (24), "fair"
(36), "strong" (48), and "secure" (56).

If neither this or length is specified, entropy will default to "strong" (48).

• length – Length of resulting password, measured in words. If omitted, the size is auto-
calculated based on the entropy parameter.

If both entropy and length are specified, the stronger value will be used.

• returns – Controls what this function returns:

– If None (the default), this function will generate a single password.

– If an integer, this function will return a list containing that many passwords.

– If the iter builtin, will return an iterator that yields passwords.

• words – Optionally specifies a list/set of words to use when randomly generating a
passphrase. This option cannot be combined with wordset.

• wordset – The predefined word set to draw from (if not specified by words). There are
currently four presets available:

172 Chapter 3. API Reference

Passlib Documentation, Release 1.8.0.dev0

"eff_long" (the default)

Wordset containing 7776 english words of ~7 letters. Constructed by the EFF, it offers
~12.9 bits of entropy per word.

This wordset (and the other "eff_" wordsets) were created by the EFF to aid in
generating passwords. See their announcement page for more details about the design
& properties of these wordsets.

"eff_short"

Wordset containing 1296 english words of ~4.5 letters. Constructed by the EFF, it
offers ~10.3 bits of entropy per word.

"eff_prefixed"

Wordset containing 1296 english words of ~8 letters, selected so that they each have a
unique 3-character prefix. Constructed by the EFF, it offers ~10.3 bits of entropy per
word.

"bip39"

Wordset of 2048 english words of ~5 letters, selected so that they each have a unique
4-character prefix. Published as part of Bitcoin’s BIP 39, this wordset has exactly 11
bits of entropy per word.

This list offers words that are typically shorter than "eff_long" (at the cost of
slightly less entropy); and much shorter than "eff_prefixed" (at the cost of a
longer unique prefix).

• sep – Optional separator to use when joining words. Defaults to " " (a space), but can be
an empty string, a hyphen, etc.

Returns str containing randomly generated passphrase; or list of 1+ passphrases if
returns=int is specified.

3.10.2 Predefined Symbol Sets

The following predefined sets are used by the generation functions above, but are exported by this module for general
use:

default_charsets
Dictionary mapping charset name -> string of characters, used by genword(). See that function for a list of
predefined charsets present in this dict.

default_wordsets
Dictionary mapping wordset name -> tuple of words, used by genphrase(). See that function for a list of
predefined wordsets present in this dict.

(Note that this is actually a special object which will lazy-load wordsets from disk on-demand)

3.10.3 Password Strength Estimation

Passlib does not currently offer any password strength estimation routines. However, the (javascript-based) zxcvbn
project is a very good choice.

Though there are a few different python ports of ZXCVBN library, as of 2019-11-13, zxcvbn (@ pypi) is the most
up-to-date, and is endorsed by the upstream zxcvbn developers.

3.10. passlib.pwd – Password generation helpers 173

https://www.eff.org/deeplinks/2016/07/new-wordlists-random-passphrases
https://github.com/bitcoin/bips/blob/master/bip-0039/english.txt
https://github.com/dropbox/zxcvbn
https://pypi.python.org/pypi/zxcvbn

Passlib Documentation, Release 1.8.0.dev0

3.11 passlib.registry - Password Handler Registry

This module contains the code Passlib uses to track all password hash handlers that it knows about. While custom
handlers can be used directly within an application, or even handed to a CryptContext; it is frequently useful to
register them globally within a process and then refer to them by name. This module provides facilities for that, as
well as programmatically querying Passlib to detect what algorithms are available.

Warning: This module is primarily used as an internal support module. Its interface has not been finalized yet,
and may be changed somewhat between major releases of Passlib, as the internal code is cleaned up and simplified.

Applications should access hashes through the passlib.hash module where possible (new ones may also be
registered by writing to that module).

3.11.1 Interface

passlib.registry.get_crypt_handler(name[, default])
return handler for specified password hash scheme.

this method looks up a handler for the specified scheme. if the handler is not already loaded, it checks if the
location is known, and loads it first.

Parameters

• name – name of handler to return

• default – optional default value to return if no handler with specified name is found.

Raises KeyError – if no handler matching that name is found, and no default specified, a KeyError
will be raised.

Returns handler attached to name, or default value (if specified).

passlib.registry.list_crypt_handlers(loaded_only=False)
return sorted list of all known crypt handler names.

Parameters loaded_only – if True, only returns names of handlers which have actually been
loaded.

Returns list of names of all known handlers

passlib.registry.register_crypt_handler_path(name, path)
register location to lazy-load handler when requested.

custom hashes may be registered via register_crypt_handler(), or they may be registered by this
function, which will delay actually importing and loading the handler until a call to get_crypt_handler()
is made for the specified name.

Parameters

• name – name of handler

• path – module import path

the specified module path should contain a password hash handler called name, or the path may con-
tain a colon, specifying the module and module attribute to use. for example, the following would cause
get_handler("myhash") to look for a class named myhash within the myapp.helpers module:

>>> from passlib.registry import registry_crypt_handler_path
>>> registry_crypt_handler_path("myhash", "myapp.helpers")

174 Chapter 3. API Reference

https://docs.python.org/3/library/exceptions.html#KeyError

Passlib Documentation, Release 1.8.0.dev0

. . . while this form would cause get_handler("myhash") to look for a class name MyHash within the
myapp.helpers module:

>>> from passlib.registry import registry_crypt_handler_path
>>> registry_crypt_handler_path("myhash", "myapp.helpers:MyHash")

passlib.registry.register_crypt_handler(handler, force=False)
register password hash handler.

this method immediately registers a handler with the internal passlib registry, so that it will be returned by
get_crypt_handler() when requested.

Parameters

• handler – the password hash handler to register

• force – force override of existing handler (defaults to False)

• _attr – [internal kwd] if specified, ensures handler.name matches this value, or raises
ValueError.

Raises

• TypeError – if the specified object does not appear to be a valid handler.

• ValueError – if the specified object’s name (or other required attributes) contain invalid
values.

• KeyError – if a (different) handler was already registered with the same name, and
force=True was not specified.

Note: All password hashes registered with passlib can be imported by name from the passlib.hash module. This
is true not just of the built-in hashes, but for any hash registered with the registration functions in this module.

3.11.2 Usage

Example showing how to use registry_crypt_handler_path():

>>> # register the location of a handler without loading it
>>> from passlib.registry import register_crypt_handler_path
>>> register_crypt_handler_path("myhash", "myapp.support.hashes")

>>> # even before being loaded, its name will show up as available
>>> from passlib.registry import list_crypt_handlers
>>> 'myhash' in list_crypt_handlers()
True
>>> 'myhash' in list_crypt_handlers(loaded_only=True)
False

>>> # when the name "myhash" is next referenced,
>>> # the class "myhash" will be imported from the module "myapp.support.hashes"
>>> from passlib.context import CryptContext
>>> cc = CryptContext(schemes=["myhash"]) #<-- this will cause autoimport

Example showing how to load a hash by name:

3.11. passlib.registry - Password Handler Registry 175

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#KeyError

Passlib Documentation, Release 1.8.0.dev0

>>> from passlib.registry import get_crypt_handler
>>> get_crypt_handler("sha512_crypt")
<class 'passlib.handlers.sha2_crypt.sha512_crypt'>

>>> get_crypt_handler("missing_hash")
KeyError: "no crypt handler found for algorithm: 'missing_hash'"

>>> get_crypt_handler("missing_hash", None)
None

3.12 passlib.totp – TOTP / Two Factor Authentication

New in version 1.7.

3.12.1 Overview

The passlib.totp module provides a number of classes for implementing two-factor authentication (2FA) using
the TOTP1 specification. This page provides a reference to all the classes and methods in this module.

Passlib’s TOTP support is centered around the TOTP class. There are also some additional helpers, including the
AppWallet class, which helps to securely encrypt TOTP keys for storage.

See also:

• TOTP Tutorial – Overview of this module and walkthrough of how to use it.

3.12.2 TOTP Class

class passlib.totp.TOTP(key=None, format="base32", *, new=False, **kwds)
Helper for generating and verifying TOTP codes.

Given a secret key and set of configuration options, this object offers methods for token generation, token
validation, and serialization. It can also be used to track important persistent TOTP state, such as the last
counter used.

This class accepts the following options (only key and format may be specified as positional arguments).

Parameters

• key (str) – The secret key to use. By default, should be encoded as a base32 string (see
format for other encodings).

Exactly one of key or new=True must be specified.

• format (str) – The encoding used by the key parameter. May be one of: "base32"
(base32-encoded string), "hex" (hexadecimal string), or "raw" (raw bytes). Defaults to
"base32".

• new (bool) – If True, a new key will be generated using random.SystemRandom.

Exactly one new=True or key must be specified.

1 TOTP Specification - RFC 6238

176 Chapter 3. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/random.html#random.SystemRandom
https://tools.ietf.org/html/rfc6238.html

Passlib Documentation, Release 1.8.0.dev0

• label (str) – Label to associate with this token when generating a URI. Displayed to user
by most OTP client applications (e.g. Google Authenticator), and typically has format such
as "John Smith" or "jsmith@webservice.example.org". Defaults to None.
See to_uri() for details.

• issuer (str) – String identifying the token issuer (e.g. the domain name of your service).
Used internally by some OTP client applications (e.g. Google Authenticator) to distinguish
entries which otherwise have the same label. Optional but strongly recommended if you’re
rendering to a URI. Defaults to None. See to_uri() for details.

• size (int) – Number of bytes when generating new keys. Defaults to size of hash algo-
rithm (e.g. 20 for SHA1).

Warning: Overriding the default values for digits, period, or alg may cause
problems with some OTP client programs (such as Google Authenticator), which may
have these defaults hardcoded.

• digits (int) – The number of digits in the generated / accepted tokens. Defaults to 6.
Must be in range [6 .. 10].

Caution: Due to a limitation of the HOTP algorithm, the 10th digit can only take on
values 0 .. 2, and thus offers very little extra security.

• alg (str) – Name of hash algorithm to use. Defaults to "sha1". "sha256" and
"sha512" are also accepted, per RFC 6238.

• period (int) – The time-step period to use, in integer seconds. Defaults to 30.

See below for all the TOTP methods & attributes. . .

3.12.3 Alternate Constructors

There are a few alternate class constructors offered. These range from simple convenience wrappers such as TOTP.
new(), to deserialization methods such as TOTP.from_source().

classmethod TOTP.new()
convenience alias for creating new TOTP key, same as TOTP(new=True)

classmethod TOTP.from_source(source)
Load / create a TOTP object from a serialized source. This acts as a wrapper for the various deserialization
methods:

• TOTP URIs are handed off to from_uri()

• Any other strings are handed off to from_json()

• Dicts are handed off to from_dict()

Parameters source – Serialized TOTP object.

Raises ValueError – If the key has been encrypted, but the application secret isn’t available; or
if the string cannot be recognized, parsed, or decoded.

See TOTP.using() for how to configure application secrets.

Returns a TOTP instance.

3.12. passlib.totp – TOTP / Two Factor Authentication 177

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://tools.ietf.org/html/rfc6238.html
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError

Passlib Documentation, Release 1.8.0.dev0

classmethod TOTP.from_uri(uri)
create an OTP instance from a URI (such as returned by to_uri()).

Returns TOTP instance.

Raises ValueError – if the uri cannot be parsed or contains errors.

See also:

Configuring Clients tutorial for a usage example

classmethod TOTP.from_json(source)
Load / create an OTP object from a serialized json string (as generated by to_json()).

Parameters json – Serialized output from to_json(), as str or ascii bytes.

Raises ValueError – If the key has been encrypted, but the application secret isn’t available; or
if the string cannot be recognized, parsed, or decoded.

See TOTP.using() for how to configure application secrets.

Returns a TOTP instance.

See also:

Storing TOTP instances tutorial for a usage example

classmethod TOTP.from_dict(source)
Load / create a TOTP object from a dictionary (as generated by to_dict())

Parameters source – dict containing serialized TOTP key & configuration.

Raises ValueError – If the key has been encrypted, but the application secret isn’t available; or
if the dict cannot be recognized, parsed, or decoded.

See TOTP.using() for how to configure application secrets.

Returns A TOTP instance.

See also:

Storing TOTP instances tutorial for a usage example

3.12.4 Factory Creation

One powerful method offered by the TOTP class is TOTP.using(). This method allows you to quickly create
TOTP subclasses with preconfigured defaults, for configuration application secrets and setting default TOTP behavior
for your application:

classmethod TOTP.using(digits=None, alg=None, period=None, issuer=None, wallet=None,
now=None, **kwds)

Dynamically create subtype of TOTP class which has the specified defaults set.

Parameters digits, alg, period, issuer:

All these options are the same as in the TOTP constructor, and the resulting class will use any
values you specify here as the default for all TOTP instances it creates.

Parameters

• wallet – Optional AppWallet that will be used for encrypting/decrypting keys.

• secrets_path, encrypt_cost (secrets,) – If specified, these options will be
passed to the AppWallet constructor, allowing you to directly specify the secret keys that
should be used to encrypt & decrypt stored keys.

178 Chapter 3. API Reference

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

Passlib Documentation, Release 1.8.0.dev0

Returns subclass of TOTP.

This method is useful for creating a TOTP class configured to use your application’s secrets for encrypting &
decrypting keys, as well as create new keys using it’s desired configuration defaults.

As an example:

>>> # your application can create a custom class when it initializes
>>> from passlib.totp import TOTP, generate_secret
>>> TotpFactory = TOTP.using(secrets={"1": generate_secret()})

>>> # subsequent TOTP objects created from this factory
>>> # will use the specified secrets to encrypt their keys...
>>> totp = TotpFactory.new()
>>> totp.to_dict()
{'enckey': {'c': 14,
'k': 'H77SYXWORDPGVOQTFRR2HFUB3C45XXI7',
's': 'G5DOQPIHIBUM2OOHHADQ',
't': '1',
'v': 1},
'type': 'totp',
'v': 1}

See also:

Creating TOTP Instances and Storing TOTP instances tutorials for a usage example

3.12.5 Basic Attributes

All the TOTP objects offer the following attributes, which correspond to the constructor options above. Most of this
information will be serialized by TOTP.to_uri() and TOTP.to_json():

TOTP.key
secret key as raw bytes

TOTP.hex_key
secret key encoded as hexadecimal string

TOTP.base32_key
secret key encoded as base32 string

TOTP.label = None
default label for to_uri()

TOTP.issuer = None
default issuer for to_uri()

TOTP.digits = 6
number of digits in the generated tokens.

TOTP.alg = 'sha1'
name of hash algorithm in use (e.g. "sha1")

TOTP.period = 30
number of seconds per counter step. (TOTP uses an internal time-derived counter which increments by 1 every
period seconds).

TOTP.changed = False
Flag set by deserialization methods to indicate the object needs to be re-serialized. This can be for a number of
reasons – encoded using deprecated format, or encrypted using a deprecated key or too few rounds.

3.12. passlib.totp – TOTP / Two Factor Authentication 179

Passlib Documentation, Release 1.8.0.dev0

3.12.6 Token Generation

Token generation is generally useful client-side, and for generating values to test your server implementation. There
is one main generation method:

TOTP.generate(time=None)
Generate token for specified time (uses current time if none specified).

Parameters time – Can be None, a datetime, or class:!float / int unix epoch timestamp. If
None (the default), uses current system time. Naive datetimes are treated as UTC.

Returns A TotpToken instance, which can be treated as a sequence of (token,
expire_time) – see that class for more details.

Usage example:

>>> # generate a new token, wrapped in a TotpToken instance...
>>> otp = TOTP('s3jdvb7qd2r7jpxx')
>>> otp.generate(1419622739)
<TotpToken token='897212' expire_time=1419622740>

>>> # when you just need the token...
>>> otp.generate(1419622739).token
'897212'

Warning: Tokens should be displayed as strings, as they may contain leading zeros which will get stripped if they
are first converted to an int.

3.12.6.1 TotpToken

The TOTP.generate() method returns instances of the following class, which offers up detailed information about
the generated token:

class passlib.totp.TotpToken
Object returned by TOTP.generate(). It can be treated as a sequence of (token, expire_time), or
accessed via the following attributes:

token = None
Token as decimal-encoded ascii string.

expire_time
Timestamp marking end of period when token is valid

counter = None
HOTP counter value used to generate token (derived from time)

remaining
number of (float) seconds before token expires

valid
whether token is still valid

3.12.7 Token Matching / Verification

Matching user-provided tokens is the main operation when implementing server-side TOTP support. Passlib offers
one main method: TOTP.match(), as well as a convenience wrapper TOTP.verify():

180 Chapter 3. API Reference

Passlib Documentation, Release 1.8.0.dev0

TOTP.match(token, time=None, window=30, skew=0, last_counter=None)
Match TOTP token against specified timestamp. Searches within a window before & after the provided time, in
order to account for transmission delay and small amounts of skew in the client’s clock.

Parameters

• token – Token to validate. may be integer or string (whitespace and hyphens are ignored).

• time – Unix epoch timestamp, can be any of float, int, or datetime. if None (the
default), uses current system time. this should correspond to the time the token was received
from the client.

• window (int) – How far backward and forward in time to search for a match. Measured
in seconds. Defaults to 30. Typically only useful if set to multiples of period.

• skew (int) – Adjust timestamp by specified value, to account for excessive client clock
skew. Measured in seconds. Defaults to 0.

Negative skew (the common case) indicates transmission delay, and/or that the client clock
is running behind the server.

Positive skew indicates the client clock is running ahead of the server (and by enough that it
cancels out any negative skew added by the transmission delay).

You should ensure the server clock uses a reliable time source such as NTP, so that only the
client clock’s inaccuracy needs to be accounted for.

This is an advanced parameter that should usually be left at 0; The window parameter is
usually enough to account for any observed transmission delay.

• last_counter – Optional value of last counter value that was successfully used. If
specified, verify will never search earlier counters, no matter how large the window is.

Useful when client has previously authenticated, and thus should never provide a token older
than previously verified value.

Raises TokenError – If the token is malformed, fails to match, or has already been used.

Returns TotpMatch Returns a TotpMatch instance on successful match. Can be treated as tuple
of (counter, time). Raises error if token is malformed / can’t be verified.

Usage example:

>>> totp = TOTP('s3jdvb7qd2r7jpxx')

>>> # valid token for this time period
>>> totp.match('897212', 1419622729)
<TotpMatch counter=47320757 time=1419622729 cache_seconds=60>

>>> # token from counter step 30 sec ago (within allowed window)
>>> totp.match('000492', 1419622729)
<TotpMatch counter=47320756 time=1419622729 cache_seconds=60>

>>> # invalid token -- token from 60 sec ago (outside of window)
>>> totp.match('760389', 1419622729)
Traceback:

...
InvalidTokenError: Token did not match

classmethod TOTP.verify(token, source, **kwds)
Convenience wrapper around TOTP.from_source() and TOTP.match().

3.12. passlib.totp – TOTP / Two Factor Authentication 181

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Passlib Documentation, Release 1.8.0.dev0

This parses a TOTP key & configuration from the specified source, and tries and match the token. It’s designed
to parallel the passlib.ifc.PasswordHash.verify() method.

Parameters

• token – Token string to match.

• source – Serialized TOTP key. Can be anything accepted by TOTP.from_source().

• **kwds – All additional keywords passed to TOTP.match().

Returns A TotpMatch instance, or raises a TokenError.

See also:

Verifying Tokens tutorial for a usage example

3.12.7.1 TotpMatch

If successful, the TOTP.verify() method returns instances of the following class, which offers up detailed infor-
mation about the matched token:

class passlib.totp.TotpMatch
Object returned by TOTP.match() and TOTP.verify() on a successful match.

It can be treated as a sequence of (counter, time), or accessed via the following attributes:

counter = 0
TOTP counter value which matched token. (Best practice is to subsequently ignore tokens matching this
counter or earlier)

time = 0
Timestamp when verification was performed.

expected_counter = 0
Counter value expected for timestamp.

skipped = 0
How many steps were skipped between expected and actual matched counter value (may be positive, zero,
or negative).

expire_time = 0
Timestamp marking end of period when token is valid

cache_seconds = 60
Number of seconds counter should be cached before it’s guaranteed to have passed outside of verification
window.

cache_time = 0
Timestamp marking when counter has passed outside of verification window.

This object will always have a True boolean value.

3.12.8 Client Configuration Methods

Once a server has generated a new TOTP key & configuration, it needs to be communicated to the user in order for
them to store it in a suitable TOTP client.

182 Chapter 3. API Reference

Passlib Documentation, Release 1.8.0.dev0

This can be done by displaying the key & configuration for the user to hand-enter into their client, or by encoding
TOTP object into a URI3. These configuration URIs can subsequently be displayed as a QR code, for easy transfer to
many smartphone-based TOTP clients (such as Authy or Google Authenticator).

TOTP.to_uri(label=None, issuer=None)
Serialize key and configuration into a URI, per Google Auth’s KeyUriFormat.

Parameters

• label (str) – Label to associate with this token when generating a URI. Displayed to
user by most OTP client applications (e.g. Google Authenticator), and typically has format
such as "John Smith" or "jsmith@webservice.example.org".

Defaults to label constructor argument. Must be provided in one or the other location. May
not contain :.

• issuer (str) – String identifying the token issuer (e.g. the domain or canonical name
of your service). Optional but strongly recommended if you’re rendering to a URI. Used
internally by some OTP client applications (e.g. Google Authenticator) to distinguish entries
which otherwise have the same label.

Defaults to issuer constructor argument, or None. May not contain :.

Raises ValueError –

• if a label was not provided either as an argument, or in the constructor.

• if the label or issuer contains invalid characters.

Returns all the configuration information for this OTP token generator, encoded into a URI.

These URIs are frequently converted to a QRCode for transferring to a TOTP client application such as Google
Auth. Usage example:

>>> from passlib.totp import TOTP
>>> tp = TOTP('s3jdvb7qd2r7jpxx')
>>> uri = tp.to_uri("user@example.org", "myservice.another-example.org")
>>> uri
'otpauth://totp/user@example.org?secret=S3JDVB7QD2R7JPXX&issuer=myservice.another-
→˓example.org'

Changed in version 1.7.2: This method now prepends the issuer URI label. This is recommended by the KeyURI
specification, for compatibility with older clients.

TOTP.pretty_key(format=’base32’, sep=’-’)
pretty-print the secret key.

This is mainly useful for situations where the user cannot get the qrcode to work, and must enter the key
manually into their TOTP client. It tries to format the key in a manner that is easier for humans to read.

Parameters

• format – format to output secret key. "hex" and "base32" are both accepted.

• sep – separator to insert to break up key visually. can be any of "-" (the default), " ", or
False (no separator).

Returns key as native string.

Usage example:
3 Google’s OTPAuth URI format - https://github.com/google/google-authenticator/wiki/Key-Uri-Format

3.12. passlib.totp – TOTP / Two Factor Authentication 183

http://code.google.com/p/google-authenticator/wiki/KeyUriFormat
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://github.com/google/google-authenticator/wiki/Key-Uri-Format

Passlib Documentation, Release 1.8.0.dev0

>>> t = TOTP('s3jdvb7qd2r7jpxx')
>>> t.pretty_key()
'S3JD-VB7Q-D2R7-JPXX'

See also:

• The TOTP.from_source() and TOTP.from_uri() constructors for decoding URIs.

• The Configuring Clients tutorial for details about these methods, and how to render URIs to a QR Code.

3.12.9 Serialization Methods

The TOTP.to_uri() method is useful, but limited, because it requires additional information (label & issuer), and
lacks the ability to encrypt the key. The TOTP provides the following methods for serializing TOTP objects to internal
storage. When application secrets are configured via TOTP.using(), these methods will automatically encrypt the
resulting keys.

TOTP.to_json(encrypt=None)
Serialize configuration & internal state to a json string, mainly useful for persisting client-specific state in a
database. All keywords passed to to_dict().

Returns json string containing serializes configuration & state.

TOTP.to_dict(encrypt=None)
Serialize configuration & internal state to a dict, mainly useful for persisting client-specific state in a database.

Parameters encrypt – Whether to output should be encrypted.

• None (the default) – uses encrypted key if application secrets are available, otherwise uses
plaintext key.

• True – uses encrypted key, or raises TypeError if application secret wasn’t provided to OTP
constructor.

• False – uses raw key.

Returns dictionary, containing basic (json serializable) datatypes.

See also:

• The TOTP.from_source() and TOTP.from_json() constructors for decoding the results of these meth-
ods.

• The Storing TOTP instances tutorial for more details.

3.12.10 Helper Methods

While TOTP.generate(), TOTP.match(), and TOTP.verify() automatically handle normalizing tokens &
time values, the following methods are exposed in case they are useful in other contexts:

TOTP.normalize_token(token)
Normalize OTP token representation: strips whitespace, converts integers to a zero-padded string, validates
token content & number of digits.

This is a hybrid method – it can be called at the class level, as TOTP.normalize_token(), or the instance
level as TOTP().normalize_token(). It will normalize to the instance-specific number of digits, or
use the class default.

Parameters token – token as ascii bytes, str, or an integer.

184 Chapter 3. API Reference

Passlib Documentation, Release 1.8.0.dev0

Raises ValueError – if token has wrong number of digits, or contains non-numeric characters.

Returns token as str, containing only digits 0-9.

classmethod TOTP.normalize_time(time)
Normalize time value to unix epoch seconds.

Parameters time – Can be None, datetime, or unix epoch timestamp as float or int. If
None, uses current system time. Naive datetimes are treated as UTC.

Returns unix epoch timestamp as int.

3.12.11 AppWallet

The AppWallet class is used internally by the TOTP.using() method to store the application secrets provided
for handling encrypted keys. If needed, they can also be created and passed in directly.

class passlib.totp.AppWallet(secrets=None, default_tag=None, encrypt_cost=None, se-
crets_path=None)

This class stores application-wide secrets that can be used to encrypt & decrypt TOTP keys for storage. It’s
mostly an internal detail, applications usually just need to pass secrets or secrets_path to TOTP.
using().

See also:

Storing TOTP instances for more details on this workflow.

3.12.11.1 Arguments

Parameters

• secrets – Dict of application secrets to use when encrypting/decrypting stored TOTP
keys. This should include a secret to use when encrypting new keys, but may contain addi-
tional older secrets to decrypt existing stored keys.

The dict should map tags -> secrets, so that each secret is identified by a unique tag. This
tag will be stored along with the encrypted key in order to determine which secret should be
used for decryption. Tag should be string that starts with regex range [a-z0-9], and the
remaining characters must be in [a-z0-9_.-].

It is recommended to use something like a incremental counter (“1”, “2”, . . .), an ISO date
(“2016-01-01”, “2016-05-16”, . . .), or a timestamp (“19803495”, “19813495”, . . .) when
assigning tags.

This mapping be provided in three formats:

– A python dict mapping tag -> secret

– A JSON-formatted string containing the dict

– A multiline string with the format "tag: value\ntag: value\n..."

(This last format is mainly useful when loading from a text file via secrets_path)

See also:

generate_secret() to create a secret with sufficient entropy

• secrets_path – Alternately, callers can specify a separate file where the application-
wide secrets are stored, using either of the string formats described in secrets.

3.12. passlib.totp – TOTP / Two Factor Authentication 185

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int

Passlib Documentation, Release 1.8.0.dev0

• default_tag – Specifies which tag in secrets should be used as the default for encrypting
new keys. If omitted, the tags will be sorted, and the largest tag used as the default.

if all tags are numeric, they will be sorted numerically; otherwise they will be sorted alpha-
betically. this permits tags to be assigned numerically, or e.g. using YYYY-MM-DD dates.

• encrypt_cost – Optional time-cost factor for key encryption. This value corresponds to
log2() of the number of PBKDF2 rounds used.

Warning: The application secret(s) should be stored in a secure location by your application, and each
secret should contain a large amount of entropy (to prevent brute-force attacks if the encrypted keys are
leaked).

generate_secret() is provided as a convenience helper to generate a new application secret of suitable
size.

Best practice is to load these values from a file via secrets_path, and then have your application give up
permission to read this file once it’s running.

3.12.11.2 Public Methods

has_secrets
whether at least one application secret is present

default_tag = None
tag for default secret

3.12.11.3 Semi-Private Methods

The following methods are used internally by the TOTP class in order to encrypt & decrypt keys using the
provided application secrets. They will generally not be publically useful, and may have their API changed
periodically.

get_secret(tag)
resolve a secret tag to the secret (as bytes). throws a KeyError if not found.

encrypt_key(key)
Helper used to encrypt TOTP keys for storage.

Parameters key – TOTP key to encrypt, as raw bytes.

Returns dict containing encrypted TOTP key & configuration parameters. this format should
be treated as opaque, and potentially subject to change, though it is designed to be easily
serialized/deserialized (e.g. via JSON).

Note: This function requires installation of the external cryptography package.

To give some algorithm details: This function uses AES-256-CTR to encrypt the provided data. It takes
the application secret and randomly generated salt, and uses PBKDF2-HMAC-SHA256 to combine them
and generate the AES key & IV.

decrypt_key(enckey)
Helper used to decrypt TOTP keys from storage format. Consults configured secrets to decrypt key.

Parameters source – source object, as returned by encrypt_key().

186 Chapter 3. API Reference

https://cryptography.io

Passlib Documentation, Release 1.8.0.dev0

Returns

(key, needs_recrypt) –

key will be the decrypted key, as bytes.

needs_recrypt will be a boolean flag indicating whether encryption cost or default tag is too
old, and henace that key needs re-encrypting before storing.

Note: This function requires installation of the external cryptography package.

3.12.12 Support Functions

passlib.totp.generate_secret(entropy=256)
generate a random string suitable for use as an AppWallet application secret.

Parameters entropy – number of bits of entropy (controls size/complexity of password).

3.12.13 Deviations

• The TOTP Spec1 includes an param (T0) providing an optional offset from the base time. Passlib omits this
parameter (fixing it at 0), but so do pretty much all other TOTP implementations.

3.13 passlib.utils - Helper Functions

Warning: This module is primarily used as an internal support module. Its interface has not been finalized yet,
and may be changed somewhat between major releases of Passlib, as the internal code is cleaned up and simplified.

This module primarily contains utility functions used internally by Passlib. However, end-user applications may find
some of the functions useful, in particular:

• consteq()

• saslprep()

• generate_password()

3.13.1 Constants

passlib.utils.unix_crypt_schemes
List of the names of all the hashes in passlib.hash which are natively supported by crypt() on at least
one operating system.

For all hashes in this list, the expression passlib.hash.alg.has_backend("os_crypt") will return
True if the host OS natively supports the hash. This list is used by host_context and ldap_context to
determine which hashes are supported by the host.

See also:

Identifiers & Platform Support for a table of which OSes are known to support which hashes.

3.13. passlib.utils - Helper Functions 187

https://cryptography.io

Passlib Documentation, Release 1.8.0.dev0

3.13.2 Unicode Helpers

passlib.utils.consteq(left, right)
Check two strings/bytes for equality.

This is functionally equivalent to left == right, but attempts to take constant time relative to the size of
the righthand input.

The purpose of this function is to help prevent timing attacks during digest comparisons: the standard == opera-
tor aborts after the first mismatched character, causing its runtime to be proportional to the longest prefix shared
by the two inputs. If an attacker is able to predict and control one of the two inputs, repeated queries can be
leveraged to reveal information about the content of the second argument. To minimize this risk, consteq() is
designed to take THETA(len(right)) time, regardless of the contents of the two strings. It is recommended
that the attacker-controlled input be passed in as the left-hand value.

Warning: This function is not perfect. Various VM-dependant issues (e.g. the VM’s integer object instan-
tiation algorithm, internal unicode representation, etc), may still cause the function’s run time to be affected
by the inputs, though in a less predictable manner. To minimize such risks, this function should not be passed
unicode inputs that might contain non- ASCII characters.

New in version 1.6.

Changed in version 1.7: This is an alias for stdlib’s hmac.compare_digest() under Python 3.3 and up.

passlib.utils.saslprep(source, param=’value’)
Normalizes unicode strings using SASLPrep stringprep profile.

The SASLPrep profile is defined in RFC 4013. It provides a uniform scheme for normalizing unicode user-
names and passwords before performing byte-value sensitive operations such as hashing. Among other things,
it normalizes diacritic representations, removes non-printing characters, and forbids invalid characters such as
\n. Properly internationalized applications should run user passwords through this function before hashing.

Parameters

• source – unicode string to normalize & validate

• param – Optional noun identifying source parameter in error messages (Defaults to the
string "value"). This is mainly useful to make the caller’s error messages make more
sense contextually.

Raises

• ValueError – if any characters forbidden by the SASLPrep profile are encountered.

• TypeError – if input is not unicode

Returns normalized unicode string

Note: This function is not available under Jython, as the Jython stdlib is missing the stringprep module
(Jython issue 1758320).

New in version 1.6.

3.13.3 Bytes Helpers

passlib.utils.xor_bytes(left, right)
Perform bitwise-xor of two byte strings (must be same size)

188 Chapter 3. API Reference

https://docs.python.org/3/library/hmac.html#hmac.compare_digest
https://tools.ietf.org/html/rfc4013.html
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#TypeError
http://bugs.jython.org/issue1758320

Passlib Documentation, Release 1.8.0.dev0

passlib.utils.render_bytes(source, *args)
Peform % formating using bytes in a uniform manner across Python 2/3.

This function is motivated by the fact that bytes instances do not support % or {} formatting under Python 3.
This function is an attempt to provide a replacement: it converts everything to unicode (decoding bytes instances
as latin-1), performs the required formatting, then encodes the result to latin-1.

Calling render_bytes(source, *args) should function roughly the same as source % args under
Python 2.

Todo: python >= 3.5 added back limited support for bytes %, can revisit when 3.3/3.4 is dropped.

passlib.utils.int_to_bytes(value, count)
encode integer as single big-endian byte string

passlib.utils.bytes_to_int(value)
decode byte string as single big-endian integer

3.13.4 Encoding Helpers

passlib.utils.is_same_codec(left, right)
Check if two codec names are aliases for same codec

passlib.utils.is_ascii_codec(codec)
Test if codec is compatible with 7-bit ascii (e.g. latin-1, utf-8; but not utf-16)

passlib.utils.is_ascii_safe(source)
Check if string (bytes or unicode) contains only 7-bit ascii

passlib.utils.to_bytes(source, encoding=’utf-8’, param=’value’, source_encoding=None)
Helper to normalize input to bytes.

Parameters

• source – Source bytes/unicode to process.

• encoding – Target encoding (defaults to "utf-8").

• param – Optional name of variable/noun to reference when raising errors

• source_encoding – If this is specified, and the source is bytes, the source will be
transcoded from source_encoding to encoding (via unicode).

Raises TypeError – if source is not str or bytes.

Returns

• unicode strings will be encoded using encoding, and returned.

• if source_encoding is not specified, byte strings will be returned unchanged.

• if source_encoding is specified, byte strings will be transcoded to encoding.

passlib.utils.to_unicode(source, encoding=’utf-8’, param=’value’)
Helper to normalize input to unicode.

Parameters

• source – source bytes/unicode to process.

• encoding – encoding to use when decoding bytes instances.

• param – optional name of variable/noun to reference when raising errors.

3.13. passlib.utils - Helper Functions 189

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/exceptions.html#TypeError

Passlib Documentation, Release 1.8.0.dev0

Raises TypeError – if source is not str or bytes.

Returns

• returns unicode strings unchanged.

• returns bytes strings decoded using encoding

passlib.utils.to_native_str(source, encoding=’utf-8’, param=’value’)
Take in str or bytes, returns str.

leaves str alone, decodes bytes using specified encoding.

Raises TypeError – if source is not unicode or bytes.

Parameters

• source – source unicode or bytes string.

• encoding – encoding to use when encoding unicode or decoding bytes. this defaults to
"utf-8".

• param – optional name of variable/noun to reference when raising errors.

Returns str instance

3.13.5 Randomness

passlib.utils.rng
The random number generator used by Passlib to generate salt strings and other things which don’t require a
cryptographically strong source of randomness.

If os.urandom() support is available, this will be an instance of random.SystemRandom, otherwise it
will use the default python PRNG class, seeded from various sources at startup.

passlib.utils.getrandbytes(rng, count)
return byte-string containing count number of randomly generated bytes, using specified rng

passlib.utils.getrandstr(rng, charset, count)
return string containing count number of chars/bytes, whose elements are drawn from specified charset, using
specified rng

passlib.utils.generate_password(size=10, charset=<default charset>)
generate random password using given length & charset

param size size of password.

param charset optional string specified set of characters to draw from.

the default charset contains all normal alphanumeric characters, except for the charac-
ters 1IiLl0OoS5, which were omitted due to their visual similarity.

returns str containing randomly generated password.

Note: Using the default character set, on a OS with SystemRandom support, this function should
generate passwords with 5.7 bits of entropy per character.

Deprecated since version 1.7: and will be removed in version 2.0, use passlib.pwd.genword() /
passlib.pwd.genphrase() instead.

190 Chapter 3. API Reference

https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.urandom

Passlib Documentation, Release 1.8.0.dev0

3.13.6 Interface Tests

passlib.utils.is_crypt_handler(obj)
check if object follows the PasswordHash API

passlib.utils.is_crypt_context(obj)
check if object appears to be a CryptContext instance

passlib.utils.has_rounds_info(handler)
check if handler provides the optional rounds information attributes

passlib.utils.has_salt_info(handler)
check if handler provides the optional salt information attributes

3.13.7 Submodules

There are also a few sub modules which provide additional utility functions:

3.13.7.1 passlib.utils.handlers - Framework for writing password hashes

Warning: This module is primarily used as an internal support module. Its interface has not been finalized yet,
and may be changed somewhat between major releases of Passlib, as the internal code is cleaned up and simplified.

Todo: This module, and the instructions on how to write a custom handler, definitely need to be rewritten for clarity.
They are not yet organized, and may leave out some important details.

Implementing Custom Handlers

All that is required in order to write a custom handler that will work with Passlib is to create an object (be it module,
class, or object) that exposes the functions and attributes required by the PasswordHash API. For classes, Passlib does
not make any requirements about what a class instance should look like (if the implementation even uses them).

That said, most of the handlers built into Passlib are based around the GenericHandler class, and its associated
mixin classes. While deriving from this class is not required, doing so will greatly reduce the amount of additional
code that is needed for all but the most convoluted password hash schemes.

Once a handler has been written, it may be used explicitly, passed into a CryptContext constructor, or registered
globally with Passlib via the passlib.registry module.

See also:

Testing Hash Handlers for details about how to test custom handlers against Passlib’s unittest suite.

The GenericHandler Class

Design

Most of the handlers built into Passlib are based around the GenericHandler class. This class is designed under
the assumption that the common workflow for hashes is some combination of the following:

3.13. passlib.utils - Helper Functions 191

Passlib Documentation, Release 1.8.0.dev0

1. parse hash into constituent parts - performed by from_string().

2. validate constituent parts - performed by GenericHandler’s constructor, and the normalization functions
such as _norm_checksum() and _norm_salt() which are provided by its related mixin classes.

3. calculate the raw checksum for a specific password - performed by _calc_checksum().

4. assemble hash, including new checksum, into a new string - performed by to_string().

With this in mind, GenericHandler provides implementations of most of the PasswordHash API methods, elimi-
nating the need for almost all the boilerplate associated with writing a password hash.

In order to minimize the amount of unneeded features that must be loaded in, the GenericHandler class it-
self contains only the parts which are needed by almost all handlers: parsing, rendering, and checksum validation.
Validation of all other parameters (such as salt, rounds, etc) is split out into separate mixin classes which enhance
GenericHandler with additional features.

Usage

In order to use GenericHandler, just subclass it, and then do the following:

• fill out the name attribute with the name of your hash.

• fill out the setting_kwds attribute with a tuple listing all the settings your hash accepts.

• provide an implementation of the from_string() classmethod.

this method should take in a potential hash string, parse it into components, and return an instance of the class
which contains the parsed components. It should throw a ValueError if no hash, or an invalid hash, is
provided.

• provide an implementation of the to_string() instance method.

this method should render an instance of your handler class (such as returned by from_string()), returning
a hash string.

• provide an implementation of the _calc_checksum() instance method.

this is the heart of the hash; this method should take in the password as the first argument, then generate and
return the digest portion of the hash, according to the settings (such as salt, etc) stored in the parsed instance this
method was called from.

note that it should not return the full hash with identifiers, etc; that job should be performed by to_string().

Some additional notes:

• In addition to simply subclassing GenericHandler, most handlers will also benefit from adding in some
of the mixin classes that are designed to add features to GenericHandler. See GenericHandler Mixins for
more details.

• Most implementations will want to alter/override the default identify() method. By default, it returns
True for all hashes that from_string() can parse without raising a ValueError; which is reliable,
but somewhat slow. For faster identification purposes, subclasses may fill in the ident attribute with the
hash’s identifying prefix, which identify() will then test for instead of calling from_string(). For
more complex situations, a custom implementation should be used; the HasManyIdents mixin may also be
helpful.

• This class does not support context kwds of any type, since that is a rare enough requirement inside passlib.

192 Chapter 3. API Reference

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

Passlib Documentation, Release 1.8.0.dev0

Interface

class passlib.utils.handlers.GenericHandler(checksum=None, use_defaults=False,
**kwds)

helper class for implementing hash handlers.

GenericHandler-derived classes will have (at least) the following constructor options, though others may be
added by mixins and by the class itself:

Parameters

• checksum – this should contain the digest portion of a parsed hash (mainly provided when
the constructor is called by from_string()). defaults to None.

• use_defaults – If False (the default), a TypeError should be thrown if any settings
required by the handler were not explicitly provided.

If True, the handler should attempt to provide a default for any missing values. This means
generate missing salts, fill in default cost parameters, etc.

This is typically only set to True when the constructor is called by hash(), allowing
user-provided values to be handled in a more permissive manner.

• relaxed – If False (the default), a ValueError should be thrown if any settings are
out of bounds or otherwise invalid.

If True, they should be corrected if possible, and a warning issue. If not possible, only then
should an error be raised. (e.g. under relaxed=True, rounds values will be clamped to
min/max rounds).

This is mainly used when parsing the config strings of certain hashes, whose specifications
implementations to be tolerant of incorrect values in salt strings.

Class Attributes

ident
[optional] If this attribute is filled in, the default identify() method will use it as a identifying prefix
that can be used to recognize instances of this handler’s hash. Filling this out is recommended for speed.

This should be a unicode str.

_hash_regex
[optional] If this attribute is filled in, the default identify() method will use it to recognize instances
of the hash. If ident is specified, this will be ignored.

This should be a unique regex object.

checksum_size
[optional] Specifies the number of characters that should be expected in the checksum string. If omitted,
no check will be performed.

checksum_chars
[optional] A string listing all the characters allowed in the checksum string. If omitted, no check will be
performed.

This should be a unicode str.

_stub_checksum
Placeholder checksum that will be used by genconfig() in lieu of actually generating a hash for the empty
string. This should be a string of the same datatype as checksum.

3.13. passlib.utils - Helper Functions 193

https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError

Passlib Documentation, Release 1.8.0.dev0

Instance Attributes

checksum
The checksum string provided to the constructor (after passing it through _norm_checksum()).

Required Subclass Methods

The following methods must be provided by handler subclass:

classmethod from_string(hash, **context)
return parsed instance from hash/configuration string

Parameters **context – context keywords to pass to constructor (if applicable).

Raises ValueError – if hash is incorrectly formatted

Returns hash parsed into components, for formatting / calculating checksum.

to_string()
render instance to hash or configuration string

Returns

hash string with salt & digest included.

should return native str.

_calc_checksum(secret)
given secret; calcuate and return encoded checksum portion of hash string, taking config from object state

calc checksum implementations may assume secret is always either str or bytes, checks are performed by
verify/etc.

Default Methods

The following methods have default implementations that should work for most cases, though they may be
overridden if the hash subclass needs to:

_norm_checksum(checksum, relaxed=False)
validates checksum keyword against class requirements, returns normalized version of checksum.

classmethod genconfig(**kwds)
compile settings into a configuration string for genhash()

Deprecated since version 1.7: As of 1.7, this method is deprecated, and slated for complete removal in
Passlib 2.0.

For all known real-world uses, hashing a constant string should provide equivalent functionality.

This deprecation may be reversed if a use-case presents itself in the mean time.

classmethod genhash(secret, config, **context)
generated hash for secret, using settings from config/hash string

Deprecated since version 1.7: As of 1.7, this method is deprecated, and slated for complete removal in
Passlib 2.0.

This deprecation may be reversed if a use-case presents itself in the mean time.

classmethod identify(hash)
check if hash belongs to this scheme, returns True/False

194 Chapter 3. API Reference

https://docs.python.org/3/library/exceptions.html#ValueError

Passlib Documentation, Release 1.8.0.dev0

classmethod hash(secret, **kwds)
Hash secret, returning result. Should handle generating salt, etc, and should return string containing iden-
tifier, salt & other configuration, as well as digest.

Parameters

• **settings_kwds – Pass in settings to customize configuration of resulting hash.

Deprecated since version 1.7: Starting with Passlib 1.7, callers should no longer
pass settings keywords (e.g. rounds or salt directly to hash()); should use .
using(**settings).hash(secret) construction instead.

Support will be removed in Passlib 2.0.

• **context_kwds – Specific algorithms may require context-specific information
(such as the user login).

classmethod verify(secret, hash, **context)
verify secret against hash, returns True/False

GenericHandler Mixins

class passlib.utils.handlers.HasSalt(salt=None, **kwds)
mixin for validating salts.

This GenericHandler mixin adds a salt keyword to the class constuctor; any value provided is passed
through the _norm_salt() method, which takes care of validating salt length and content, as well as gener-
ating new salts if one it not provided.

Parameters

• salt – optional salt string

• salt_size – optional size of salt (only used if no salt provided); defaults to
default_salt_size.

Class Attributes

In order for _norm_salt() to do its job, the following attributes should be provided by the handler subclass:

min_salt_size
The minimum number of characters allowed in a salt string. An ValueError will be throw if the
provided salt is too small. Defaults to 0.

max_salt_size
The maximum number of characters allowed in a salt string. By default an ValueError will be throw
if the provided salt is too large; but if relaxed=True, it will be clipped and a warning issued instead.
Defaults to None, for no maximum.

default_salt_size
[required] If no salt is provided, this should specify the size of the salt that will be generated by
_generate_salt(). By default this will fall back to max_salt_size.

salt_chars
A string containing all the characters which are allowed in the salt string. An ValueError will be
throw if any other characters are encountered. May be set to None to skip this check (but see in
default_salt_chars).

3.13. passlib.utils - Helper Functions 195

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

Passlib Documentation, Release 1.8.0.dev0

default_salt_chars
[required] This attribute controls the set of characters use to generate new salt strings. By default, it mirrors
salt_chars. If salt_chars is None, this attribute must be specified in order to generate new salts.
Aside from that purpose, the main use of this attribute is for hashes which wish to generate salts from a
restricted subset of salt_chars; such as accepting all characters, but only using a-z.

Instance Attributes

salt
This instance attribute will be filled in with the salt provided to the constructor (as adapted by
_norm_salt())

Subclassable Methods

classmethod _norm_salt(salt, relaxed=False)
helper to normalize & validate user-provided salt string

Parameters salt – salt string

Raises

• TypeError – If salt not correct type.

• ValueError –

– if salt contains chars that aren’t in salt_chars.

– if salt contains less than min_salt_size characters.

– if relaxed=False and salt has more than max_salt_size characters (if
relaxed=True, the salt is truncated and a warning is issued instead).

Returns normalized salt

classmethod _generate_salt()
helper method for _init_salt(); generates a new random salt string.

class passlib.utils.handlers.HasRounds(rounds=None, **kwds)
mixin for validating rounds parameter

This GenericHandler mixin adds a rounds keyword to the class constuctor; any value provided is passed
through the _norm_rounds() method, which takes care of validating the number of rounds.

Parameters rounds – optional number of rounds hash should use

Class Attributes

In order for _norm_rounds() to do its job, the following attributes must be provided by the handler subclass:

min_rounds
The minimum number of rounds allowed. A ValueError will be thrown if the rounds value is too small.
Defaults to 0.

max_rounds
The maximum number of rounds allowed. A ValueError will be thrown if the rounds value is larger
than this. Defaults to None which indicates no limit to the rounds value.

196 Chapter 3. API Reference

https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

Passlib Documentation, Release 1.8.0.dev0

default_rounds
If no rounds value is provided to constructor, this value will be used. If this is not specified, a rounds value
must be specified by the application.

rounds_cost
[required] The rounds parameter typically encodes a cpu-time cost for calculating a hash. This should
be set to "linear" (the default) or "log2", depending on how the rounds value relates to the actual
amount of time that will be required.

Class Methods

Todo: document using() and needs_update() options

Instance Attributes

rounds
This instance attribute will be filled in with the rounds value provided to the constructor (as adapted by
_norm_rounds())

Subclassable Methods

classmethod _norm_rounds(rounds, relaxed=False, param=’rounds’)
helper for normalizing rounds value.

Parameters

• rounds – an integer cost parameter.

• relaxed – if True (the default), issues PasslibHashWarning is rounds are outside al-
lowed range. if False, raises a ValueError instead.

• param – optional name of parameter to insert into error/warning messages.

Raises

• TypeError –

– if use_defaults=False and no rounds is specified

– if rounds is not an integer.

• ValueError –

– if rounds is None and class does not specify a value for default_rounds.

– if relaxed=False and rounds is outside bounds of min_rounds and
max_rounds (if relaxed=True, the rounds value will be clamped, and a warn-
ing issued).

Returns normalized rounds value

class passlib.utils.handlers.HasManyIdents(ident=None, **kwds)
mixin for hashes which use multiple prefix identifiers

For the hashes which may use multiple identifier prefixes, this mixin adds an ident keyword to construc-
tor. Any value provided is passed through the norm_idents() method, which takes care of validating the
identifier, as well as allowing aliases for easier specification of the identifiers by the user.

3.13. passlib.utils - Helper Functions 197

https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError

Passlib Documentation, Release 1.8.0.dev0

Todo: document this class’s usage

Class Methods

Todo: document using() and needs_update() options

class passlib.utils.handlers.HasManyBackends(checksum=None, use_defaults=False,
**kwds)

GenericHandler mixin which provides selecting from multiple backends.

Todo: finish documenting this class’s usage

For hashes which need to select from multiple backends, depending on the host environment, this class offers a
way to specify alternate _calc_checksum() methods, and will dynamically chose the best one at runtime.

Changed in version 1.7: This class now derives from BackendMixin, which abstracts out a more generic
framework for supporting multiple backends. The public api (get_backend(), has_backend(),
set_backend()) is roughly the same.

Private API (Subclass Hooks)

As of version 1.7, classes should implement _load_backend_{name}(), per BackendMixin. This hook
should invoke _set_calc_checksum_backcend() to install it’s backend method.

Deprecated since version 1.7: The following api is deprecated, and will be removed in Passlib 2.0:

_has_backend_{name}
private class attribute checked by has_backend() to see if a specific backend is available, it should
be either True or False. One of these should be provided by the subclass for each backend listed in
backends.

_calc_checksum_{name}
private class method that should implement _calc_checksum() for a given backend. it will only be
called if the backend has been selected by set_backend(). One of these should be provided by the
subclass for each backend listed in backends.

class passlib.utils.handlers.HasRawSalt(salt=None, **kwds)
mixin for classes which use decoded salt parameter

A variant of HasSalt which takes in decoded bytes instead of an encoded string.

Todo: document this class’s usage

class passlib.utils.handlers.HasRawChecksum(checksum=None, use_defaults=False,
**kwds)

mixin for classes which work with decoded checksum bytes

Todo: document this class’s usage

198 Chapter 3. API Reference

Passlib Documentation, Release 1.8.0.dev0

Examples

Todo: Show some walk-through examples of how to use GenericHandler and its mixins

The StaticHandler class

class passlib.utils.handlers.StaticHandler(checksum=None, use_defaults=False,
**kwds)

GenericHandler mixin for classes which have no settings.

This mixin assumes the entirety of the hash ise stored in the checksum attribute; that the hash has no rounds,
salt, etc. This class provides the following:

• a default genconfig() that always returns None.

• a default from_string() and to_string() that store the entire hash within checksum, after op-
tionally stripping a constant prefix.

All that is required by subclasses is an implementation of the _calc_checksum() method.

Todo: Show some examples of how to use StaticHandler

Other Constructors

class passlib.utils.handlers.PrefixWrapper(name, wrapped, prefix=”, orig_prefix=”,
lazy=False, doc=None, ident=None)

wraps another handler, adding a constant prefix.

instances of this class wrap another password hash handler, altering the constant prefix that’s prepended to the
wrapped handlers’ hashes.

this is used mainly by the ldap crypt handlers; such as ldap_md5_crypt which wraps md5_crypt and adds
a {CRYPT} prefix.

usage:

myhandler = PrefixWrapper("myhandler", "md5_crypt", prefix="mh", orig_prefix="$1
→˓$")

Parameters

• name – name to assign to handler

• wrapped – handler object or name of registered handler

• prefix – identifying prefix to prepend to all hashes

• orig_prefix – prefix to strip (defaults to ‘’).

• lazy – if True and wrapped handler is specified by name, don’t look it up until needed.

3.13. passlib.utils - Helper Functions 199

Passlib Documentation, Release 1.8.0.dev0

Testing Hash Handlers

Within its unittests, Passlib provides the HandlerCase class, which can be subclassed to provide a unittest-
compatible test class capable of checking if a handler adheres to the PasswordHash API.

Usage

As an example of how to use HandlerCase, the following is an annotated version of the unittest for passlib.
hash.des_crypt:

from passlib.hash import des_crypt
from passlib.tests.utils import HandlerCase

create a subclass for the handler...
class DesCryptTest(HandlerCase):

"test des-crypt algorithm"

[required] - store the handler object itself in the handler attribute
handler = des_crypt

[required] - this should be a list of (password, hash) pairs,
which should all verify correctly using your handler.
it is recommend include pairs which test all of the following:
#
* empty string & short strings for passwords
* passwords with 2 byte unicode characters
* hashes with varying salts, rounds, and other options
known_correct_hashes = (

format: (password, hash)
('', 'OgAwTx2l6NADI'),
(' ', '/Hk.VPuwQTXbc'),
('test', 'N1tQbOFcM5fpg'),
('Compl3X AlphaNu3meric', 'um.Wguz3eVCx2'),
('4lpHa N|_|M3r1K W/ Cur5Es: #$%(*)(*%#', 'sNYqfOyauIyic'),
('AlOtBsOl', 'cEpWz5IUCShqM'),
(u'hell\u00D6', 'saykDgk3BPZ9E'),
)

[optional] - if there are hashes which are similar in format
to your handler, and you want to make sure :meth:`identify`
does not return ``True`` for such hashes,
list them here. otherwise this can be omitted.
#
known_unidentified_hashes = [

bad char in otherwise correctly formatted hash
'!gAwTx2l6NADI',
]

Interface

class passlib.tests.utils.HandlerCase
base class for testing password hash handlers (esp passlib.utils.handlers subclasses)

In order to use this to test a handler, create a subclass will all the appropriate attributes filled as listed in the
example below, and run the subclass via unittest.

200 Chapter 3. API Reference

Passlib Documentation, Release 1.8.0.dev0

Todo: Document all of the options HandlerCase offers.

Note: This is subclass of unittest.TestCase.

3.13.7.2 passlib.utils.binary - Binary Helper Functions

Warning: This module is primarily used as an internal support module. Its interface has not been finalized yet,
and may be changed somewhat between major releases of Passlib, as the internal code is cleaned up and simplified.

Constants

passlib.utils.binary.BASE64_CHARS
Character map used by standard MIME-compatible Base64 encoding scheme.

passlib.utils.binary.HASH64_CHARS
Base64 character map used by a number of hash formats; the ordering is wildly different from the standard
base64 character map.

This encoding system appears to have originated with des_crypt, but is used by md5_crypt,
sha256_crypt, and others. Within Passlib, this encoding is referred as the “hash64” encoding, to distin-
guish it from normal base64 and others.

passlib.utils.binary.BCRYPT_CHARS
Base64 character map used by bcrypt. The ordering is wildly different from both the standard base64 charac-
ter map, and the common hash64 character map.

Base64 Encoding

Base64Engine Class

Passlib has to deal with a number of different Base64 encodings, with varying endianness, as well as wildly different
character <-> value mappings. This is all encapsulated in the Base64Engine class, which provides common encod-
ing actions for an arbitrary base64-style encoding scheme. There are also a couple of predefined instances which are
commonly used by the hashes in Passlib.

class passlib.utils.binary.Base64Engine(charmap, big=False)
Provides routines for encoding/decoding base64 data using arbitrary character mappings, selectable endianness,
etc.

Parameters

• charmap – A string of 64 unique characters, which will be used to encode successive 6-bit
chunks of data. A character’s position within the string should correspond to its 6-bit value.

• big – Whether the encoding should be big-endian (default False).

Note: This class does not currently handle base64’s padding characters in any way what so ever.

3.13. passlib.utils - Helper Functions 201

https://docs.python.org/3/library/unittest.html#unittest.TestCase

Passlib Documentation, Release 1.8.0.dev0

Raw Bytes <-> Encoded Bytes

The following methods convert between raw bytes, and strings encoded using the engine’s specific base64
variant:

encode_bytes(source)
encode bytes to base64 string.

Parameters source – byte string to encode.

Returns byte string containing encoded data.

decode_bytes(source)
decode bytes from base64 string.

Parameters source – byte string to decode.

Returns byte string containing decoded data.

encode_transposed_bytes(source, offsets)
encode byte string, first transposing source using offset list

decode_transposed_bytes(source, offsets)
decode byte string, then reverse transposition described by offset list

Integers <-> Encoded Bytes

The following methods allow encoding and decoding unsigned integers to and from the engine’s specific base64
variant. Endianess is determined by the engine’s big constructor keyword.

encode_int6(value)
encodes 6-bit integer -> single hash64 character

decode_int6(source)
decode single character -> 6 bit integer

encode_int12(value)
encodes 12-bit integer -> 2 char string

decode_int12(source)
decodes 2 char string -> 12-bit integer

encode_int24(value)
encodes 24-bit integer -> 4 char string

decode_int24(source)
decodes 4 char string -> 24-bit integer

encode_int64(value)
encode 64-bit integer -> 11 char hash64 string

this format is used primarily by des-crypt & variants to encode the DES output value used as a checksum.

decode_int64(source)
decode 11 char base64 string -> 64-bit integer

this format is used primarily by des-crypt & variants to encode the DES output value used as a checksum.

202 Chapter 3. API Reference

Passlib Documentation, Release 1.8.0.dev0

Informational Attributes

charmap
unicode string containing list of characters used in encoding; position in string matches 6bit value of
character.

bytemap
bytes version of charmap

big
boolean flag indicating this using big-endian encoding.

Predefined Instances

passlib.utils.binary.h64
Predefined instance of Base64Engine which uses the HASH64_CHARS character map and little-endian en-
coding. (see HASH64_CHARS for more details).

passlib.utils.binary.h64big
Predefined variant of h64 which uses big-endian encoding. This is mainly used by des_crypt.

Changed in version 1.6: Previous versions of Passlib contained a module named passlib.utils.h64; As of
Passlib 1.6 this was replaced by the the h64 and h64big instances of the Base64Engine class; the interface
remains mostly unchanged.

Other

passlib.utils.binary.ab64_encode(data)
encode using shortened base64 format which omits padding & whitespace. uses custom ./ altchars.

it is primarily used by Passlib’s custom pbkdf2 hashes.

passlib.utils.binary.ab64_decode(data)
decode from shortened base64 format which omits padding & whitespace. uses custom ./ altchars, but supports
decoding normal +/ altchars as well.

it is primarily used by Passlib’s custom pbkdf2 hashes.

passlib.utils.binary.b64s_encode(data)
encode using shortened base64 format which omits padding & whitespace. uses default +/ altchars.

passlib.utils.binary.b64s_decode(data)
decode from shortened base64 format which omits padding & whitespace. uses default +/ altchars.

passlib.utils.binary.b32encode(source)
wrapper around base64.b32encode() which strips padding, and returns a native string.

passlib.utils.binary.b32decode(source)
wrapper around base64.b32decode() which handles common mistyped chars. padding optional, ignored
if present.

3.13.7.3 passlib.utils.des - DES routines [deprecated]

Warning: This module is deprecated as of Passlib 1.7: It has been relocated to passlib.crypto.des; and
the aliases here will be removed in Passlib 2.0.

3.13. passlib.utils - Helper Functions 203

https://docs.python.org/3/library/base64.html#base64.b32encode
https://docs.python.org/3/library/base64.html#base64.b32decode

Passlib Documentation, Release 1.8.0.dev0

This module contains routines for encrypting blocks of data using the DES algorithm. Note that these functions do not
support multi-block operation or decryption, since they are designed primarily for use in password hash algorithms
(such as des_crypt and bsdi_crypt).

passlib.utils.des.expand_des_key(key)
convert DES from 7 bytes to 8 bytes (by inserting empty parity bits)

Deprecated since version 1.7: and will be removed in version 2.0, use passlib.crypto.des.expand_des_key in-
stead.

passlib.utils.des.des_encrypt_block(key, input, salt=0, rounds=1)
encrypt single block of data using DES, operates on 8-byte strings.

arg key DES key as 7 byte string, or 8 byte string with parity bits (parity bit values are
ignored).

arg input plaintext block to encrypt, as 8 byte string.

arg salt Optional 24-bit integer used to mutate the base DES algorithm in a manner specific
to des_crypt and its variants. The default value 0 provides the normal (unsalted)
DES behavior. The salt functions as follows: if the i’th bit of salt is set, bits i and
i+24 are swapped in the DES E-box output.

arg rounds Optional number of rounds of to apply the DES key schedule. the default
(rounds=1) provides the normal DES behavior, but des_crypt and its variants use
alternate rounds values.

raises TypeError if any of the provided args are of the wrong type.

raises ValueError if any of the input blocks are the wrong size, or the salt/rounds values
are out of range.

returns resulting 8-byte ciphertext block.

Deprecated since version 1.7: and will be removed in version 2.0, use passlib.crypto.des.des_encrypt_block
instead.

passlib.utils.des.des_encrypt_int_block(key, input, salt=0, rounds=1)
encrypt single block of data using DES, operates on 64-bit integers.

this function is essentially the same as des_encrypt_block(), except that it operates on in-
tegers, and will NOT automatically expand 56-bit keys if provided (since there’s no way to detect
them).

arg key DES key as 64-bit integer (the parity bits are ignored).

arg input input block as 64-bit integer

arg salt optional 24-bit integer used to mutate the base DES algorithm. defaults to 0 (no
mutation applied).

arg rounds optional number of rounds of to apply the DES key schedule. defaults to 1.

raises TypeError if any of the provided args are of the wrong type.

raises ValueError if any of the input blocks are the wrong size, or the salt/rounds values
are out of range.

returns resulting ciphertext as 64-bit integer.

Deprecated since version 1.7: and will be removed in version 2.0, use passlib.crypto.des.des_encrypt_int_block
instead.

204 Chapter 3. API Reference

Passlib Documentation, Release 1.8.0.dev0

3.13.7.4 passlib.utils.pbkdf2 - PBKDF2 key derivation algorithm [deprecated]

Warning: This module has been deprecated as of Passlib 1.7, and will be removed in Passlib 2.0. The functions
in this module have been replaced by equivalent (but not identical) functions in the passlib.crypto module.

This module provides a couple of key derivation functions, as well as supporting utilities. Primarily, it offers
pbkdf2(), which provides the ability to generate an arbitrary length key using the PBKDF2 key derivation al-
gorithm, as specified in rfc 2898. This function can be helpful in creating password hashes using schemes which have
been based around the pbkdf2 algorithm.

PKCS#5 Key Derivation Functions

passlib.utils.pbkdf2.pbkdf1(secret, salt, rounds, keylen=None, hash=’sha1’)
pkcs#5 password-based key derivation v1.5

Parameters

• secret – passphrase to use to generate key

• salt – salt string to use when generating key

• rounds – number of rounds to use to generate key

• keylen – number of bytes to generate (if None, uses digest’s native size)

• hash – hash function to use. must be name of a hash recognized by hashlib.

Returns raw bytes of generated key

Note: This algorithm has been deprecated, new code should use PBKDF2. Among other limitations, keylen
cannot be larger than the digest size of the specified hash.

Deprecated since version 1.7: This has been relocated to passlib.crypto.digest.pbkdf1(), and this
version will be removed in Passlib 2.0. Note the call signature has changed.

passlib.utils.pbkdf2.pbkdf2(secret, salt, rounds, keylen=None, prf=’hmac-sha1’)
pkcs#5 password-based key derivation v2.0

Parameters

• secret – passphrase to use to generate key

• salt – salt string to use when generating key

• rounds – number of rounds to use to generate key

• keylen – number of bytes to generate. if set to None, will use digest size of selected prf.

• prf – psuedo-random family to use for key strengthening. this must be a string starting
with "hmac-", followed by the name of a known digest. this defaults to "hmac-sha1"
(the only prf explicitly listed in the PBKDF2 specification)

Returns raw bytes of generated key

Deprecated since version 1.7: This has been deprecated in favor of passlib.crypto.digest.
pbkdf2_hmac(), and will be removed in Passlib 2.0. Note the call signature has changed.

3.13. passlib.utils - Helper Functions 205

http://tools.ietf.org/html/rfc2898

Passlib Documentation, Release 1.8.0.dev0

Note: The details of PBKDF1 and PBKDF2 are specified in RFC 2898.

Helper Functions

passlib.utils.pbkdf2.get_prf(name)
Lookup pseudo-random family (PRF) by name.

Parameters name – This must be the name of a recognized prf. Currently this only recognizes
names with the format hmac-digest, where digest is the name of a hash function such as
md5, sha256, etc.

todo: restore text about callables.

Raises

• ValueError – if the name is not known

• TypeError – if the name is not a callable or string

Returns

a tuple of (prf_func, digest_size), where:

• prf_func is a function implementing the specified PRF, and has the signature
prf_func(secret, message) -> digest.

• digest_size is an integer indicating the number of bytes the function returns.

Usage example:

>>> from passlib.utils.pbkdf2 import get_prf
>>> hmac_sha256, dsize = get_prf("hmac-sha256")
>>> hmac_sha256
<function hmac_sha256 at 0x1e37c80>
>>> dsize
32
>>> digest = hmac_sha256('password', 'message')

Deprecated since version 1.7: This function is deprecated, and will be removed in Passlib 2.0. This only related
replacement is passlib.crypto.digest.compile_hmac().

206 Chapter 3. API Reference

https://tools.ietf.org/html/rfc2898.html
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#TypeError

CHAPTER 4

Other Documentation

Additional pages and documentation which don’t fit anywhere else:

4.1 Frequently Asked Questions

This sections documents some frequently asked questions about Passlib, and password hashing in general. But it also
includes some common misconceptions, as well as some esoteric and infrequently asked questions.

• Calling PasswordHash.hash() multiple times for the same input generates a different result! What’s
going on?

For all the hashes which include a salt, PasswordHash.hash() will automatically generate a new one each
time it’s invoked. Thus the salt & digest portions of the resulting hash string will be different every time.

• Do I need to provide a salt each time PasswordHash.hash() is called, and store the salt separately in
my database?

No. Nearly all of the hash classes passlib.hash which use a salt will automatically generate a salt, and include it
as part of the hash that’s returned.

There are just a few hashes which require an external salt (like a username), or don’t contain a salt at all. These
generally aren’t secure, and shouldn’t be used in unless you already know why you need to use them.

• How do I decrypt the hashes generated by Passlib?

Short answer: You can’t.

Long answer:

The hash algorithms in Passlib were explicitly designed so they are as hard to reverse as possible: you can hash
a password, you can check if a password matches an existing hash, and that’s it. Unless it’s an ancient algorithm
whose security has been fundamentally undermined, the only way to reverse a hash is to use brute force: hash
all potential passwords until one matches. To fight this, one of the main goals of password hashing is to make
this search take as long as possible.

207

Passlib Documentation, Release 1.8.0.dev0

However, if you really need it, there are programs dedicated to this task, two prominent ones include John the
Ripper and HashCat.

There is one single decryptable hash in Passlib: cisco_type7, which was deliberately designed this way; and
Passlib’s implementation offers a convenient decrypt() method.

• Why use PasswordHash.verify() instead of hashing user input and using == to compare it with the
stored hash?

There are two reasons for this: One, PasswordHash.verify() uses a “constant time” equality check
internally, which mitigates a class of timing attacks that == is potentially vulnerable to. These attacks are
mostly theoretical for modern password hashes with a sufficient sized-salt, but it’s better to be safe than sorry.

Two, many hash string formats encode a number of configuration parameters, some unhelpfully allow multiple
encodings of the same parameters. Thus, to make sure passwords are hashed correctly for comparison, you’ll
have to parse the hash string and pass the configuration parameters in yourself. PasswordHash.verify()
takes care of this transparently.

• Is SHA256-Crypt the same as SHA256? Is MD5-Crypt the same as MD5?

No. MD5 and SHA256 are cryptographic hash functions, which whereas md5_crypt and sha256_crypt are
complex password hash algorithms, containing a randomly generated salt, variable rounds, etc. They derive
their names from the fact that they use the respective hash functions internally.

4.2 Modular Crypt Format

A explanation about a standard that isn’t

See also:

Deprecated (as of 2016) in favor of the PHC String Format

In the opinion of the main Passlib author, the modular crypt format (described below) should be considered deprecated
when creating new hashes. The PHC String Format is an attempt to specify a common hash string format that’s a
restricted & well defined subset of the Modular Crypt Format. New hashes are strongly encouraged to adhere to the
PHC specification, rather than the much looser Modular Crypt Format.

4.2.1 Overview

A number of the hashes in Passlib are described as adhering to the “Modular Crypt Format”. This page is an attempt
to document what that means.

In short, the modular crypt format (MCF) is a standard for encoding password hash strings, which requires hashes have
the format $identifier$content; where identifier is an short alphanumeric string uniquely identifying
a particular scheme, and content is the contents of the scheme, using only the characters in the regexp range
[a-zA-Z0-9./].

However, there’s no official specification document describing this format. Nor is there a central registry of identifiers,
or actual rules. The modular crypt format is more of an ad-hoc idea rather than a true standard.

The rest of this page is an attempt to describe what is known, at least as far as the hashes supported by Passlib.

4.2.2 History

Historically, most unix systems supported only des_crypt. Around the same time, many incompatible variations
were also developed, but their hashes were not easily distinguishable from each other (see Archaic Unix Hashes);
making it impossible to use multiple hashes on one system, or progressively migrate to a newer scheme.

208 Chapter 4. Other Documentation

http://www.openwall.com/john/
http://www.openwall.com/john/
https://hashcat.net/hashcat/
https://github.com/P-H-C/phc-string-format/blob/master/phc-sf-spec.md

Passlib Documentation, Release 1.8.0.dev0

This was solved with the advent of the MCF, which was introduced around the time that md5_crypt was developed.
This format allows hashes from multiple schemes to exist within the same database, by requiring that all hash strings
begin with a unique prefix using the format $identifier$.

4.2.3 Requirements

Unfortunately, there is no specification document for this format. Instead, it exists in de facto form only; the following
is an attempt to roughly identify the conventions followed by the modular crypt format hashes found in Passlib:

1. Hash strings should use only 7-bit ascii characters.

No known OS or application generates hashes which violate this rule. However, some systems (e.g. Linux) will
happily accept hashes which contain 8-bit characters in their salt, This is probably a case of “permissive in what
you accept, strict in what you generate”.

2. Hash strings should start with the prefix $identifier$, where identifier is a short string uniquely
identifying hashes generated by that algorithm, using only lower case ascii letters, numbers, and hyphens (c.f.
the list of known identifiers below).

When MCF was first introduced, most schemes choose a single digit as their identifier (e.g. 1 for
md5_crypt). Because of this, some older systems only look at the first character when attempting to dis-
tinguish hashes. However, as Unix variants have branched off, new schemes were developed which used larger
identifying strings (e.g. $sha1$ for sha1_crypt).

At this point, any new hash schemes should probably use a 6-8 character descriptive identifier, to avoid potential
namespace clashes.

3. Hashes should only contain the ascii letters a-z and A-Z, ascii numbers 0-9, and the characters ./; though
additionally they may use the $ character as an internal field separator.

This is the least adhered-to of any modular crypt format convention. Other characters (such as +=,-) are used
by various formats.

The only hard and fast stricture is that :;!* and all non-printable or 8-bit characters be avoided, since this
would interfere with parsing of the Unix shadow password file, where these hashes are typically stored.

Pretty much all older modular-crypt-format hashes use ascii letters, numbers, ., and / to provide base64 en-
coding of their raw data, though the exact character value assignments vary between hashes (see passlib.
utils.h64). Many newer hashes use + instead of ., to adhere closer to the base64 standard.

4. Hash schemes should put their “digest” portion at the end of the hash, preferably separated by a $.

This allows password hashes to be easily truncated to a “configuration string” containing just the identifying
prefix, rounds, salt, etc.

This configuration string then encodes all the information generated needed to generate a new hash in order to
verify a password, without having to perform excessive parsing.

Most modular crypt format hashes follow this convention, though some (like bcrypt) omit the $ separator
between the configuration and the digest.

Furthermore, there is no set standard about whether configuration strings should or should not include a trailing
$ at the end, though the general rule is that hashing should behave the same in either case (sun_md5_crypt
behaves particularly poorly regarding this last point).

Note: All of the above is guesswork based on examination of existing hashes and OS implementations; and was
written merely to clarify the issue of what the “modular crypt format” is. It is drawn from no authoritative sources.

4.2. Modular Crypt Format 209

Passlib Documentation, Release 1.8.0.dev0

4.2.4 Identifiers & Platform Support

4.2.4.1 OS Defined Hashes

The following table lists of all the major MCF hashes supported by Passlib, and indicates which operating systems
offer native support:

Scheme Prefix Linux FreeBSD NetBSD OpenBSD So-
laris

des_crypt y y y y y
bsdi_crypt _ y y y
md5_crypt 1 y y y y y
bcrypt 2, $2a$, $2x$, $2y$ $2b$ y y y y
bsd_nthash 3 y
sha256_crypt 5 y 8.3+ y
sha512_crypt 6 y 8.3+ y
sun_md5_crypt $md5$, $md5, y
sha1_crypt $sha1$ y

Note: Linux systems using libxcrypt instead of libcrypt will have native support for additional formats, including
nearly all those listed above.

4.2.4.2 Additional Platforms

The modular crypt format is also supported to some degree by the following operating systems and platforms:

MacOS X Darwin’s native crypt() provides limited functionality, supporting only des_crypt and
bsdi_crypt. OS X uses a separate system for its own password hashes.

Google
App En-
gine

As of 2011-08-19, Google App Engine’s crypt() implementation appears to match that of a
typical Linux system (as listed in the previous table).

4.2.4.3 Application-Defined Hashes

The following table lists the other MCF hashes supported by Passlib. These hashes can be found in various libraries
and applications (and are not natively supported by any known OS):

210 Chapter 4. Other Documentation

https://github.com/besser82/libxcrypt

Passlib Documentation, Release 1.8.0.dev0

Scheme Prefix Primary Use (if known)
apr_md5_crypt $apr1$ Apache htdigest files
argon2 $argon2i$,

$argon2d$
bcrypt_sha256 $bcrypt-sha256$ Passlib-specific
phpass P, H PHPass-based applications
pbkdf2_sha1 $pbkdf2$ Passlib-specific
pbkdf2_sha256 $pbkdf2-sha256$ Passlib-specific
pbkdf2_sha512 $pbkdf2-sha512$ Passlib-specific
scram $scram$ Passlib-specific
cta_pbkdf2_sha1 $p5k2$1

dlitz_pbkdf2_sha1 $p5k2$1

scrypt $scrypt$ Passlib-specific

4.3 Release History

See also:

For the latest release: see What’s New in Passlib 1.8

4.3.1 Passlib 1.8

4.3.1.1 1.8.0 (NOT YET RELEASED)

Overview

Warning: 1.8 is under development, and tenatively scheduled for release in late 2017.

See https://passlib.readthedocs.io/en/stable/history/1.7.html for the latest release.

Requirements

• Passlib now requires Python >= 3.5. As of this release, support for Python 2.x, 3.3, and 3.4 has been dropped.
If you need to use Passlib on an earlier version of Python, please use the Passlib 1.7 series, which will be
maintained in bugfix-only mode for few more releases. (See issue 119 for rationale).

Backwards Incompatibilities

The following previously-deprecated features were removed, though few of these should be in use, as they’ve been
deprecated for a number of years / releases:

passlib.apache:

• passlib.apache: A number of deprecated options & methods were removed from
HtpasswdFile and Htdigest:

1 cta_pbkdf2_sha1 and dlitz_pbkdf2_sha1 both use the same identifier. While there are other internal differences, the two can be
quickly distinguished by the fact that cta hashes always end in =, while dlitz hashes contain no = at all.

4.3. Release History 211

https://passlib.readthedocs.io/en/stable/history/1.7.html
https://foss.heptapod.net/python-libs/passlib/issues/119

Passlib Documentation, Release 1.8.0.dev0

– Support for setting encoding=None removed, use return_unicode=True instead.

– autoload=False keyword removed, use new=True instead.

– load() method no longer supports force=False, use load_if_changed() instead.

– update() alias removed, use set_password() instead.

– find() alias removed, use get_hash() instead.

– verify() alias removed, use check_password() instead.

– default keyword removed, use default_scheme instead.

passlib.context:

• The passlib.context.CryptPolicy class was removed. Code should be using the equiva-
lent CryptContext() methods instead.

• Concurrent with that, CryptContext’s policy keyword and attribute were removed, along with
LazyCryptContext’s create_policy keyword.

• CryptContext.replace() alias removed, use CryptContext.using() instead.

• CryptContext’s min_verify_time and harden_verify keywords removed.

passlib.hash:

• passlib.hash.unix_fallback was removed, use unix_disabled instead.

other modules:

• In passlib.ext.django, support for CONFIG=None was dropped.

• The deprecated passlib.win32 module was removed, use passlib.hash.lmhash hash in-
stead.

internal details:

• The passlib.hash.nthash.raw_nthash() alias was removed, use nthash.raw() in-
stead.

• In passlib.utils.handlers: StaticHandler subclasses must now always implement
_calc_checksum(), the old genhash-based style is no longer supported or checked for.

• The deprecated passlib.utils.des.mdes_encrypt_int_block() method was re-
moved.

• The passlib.utils.pbkdf2.norm_hash_name() alias was removed, use passlib.
crypto.digest.norm_hash_name() instead.

• Many PY2 compatibility helper inside passlib.utils.compat have been removed.

4.3.2 Passlib 1.7

Warning: Passlib 1.8 will drop support for Python 2.x, 3.3, and 3.4; and will require Python >= 3.5. The 1.7
series will be the last to support Python 2.7. (See issue 119 for rationale).

4.3.2.1 1.7.4 (2020-10-08)

Small followup to 1.7.3 release.

212 Chapter 4. Other Documentation

https://foss.heptapod.net/python-libs/passlib/issues/119

Passlib Documentation, Release 1.8.0.dev0

Bugfixes

• Fixed some Python 2.6 errors from last release (issue 128)

Other Changes

• passlib.ext.django – updated tests to pass for Django 1.8 - 3.1 (issue 98); along with some internal
refactoring of the test classes.

• CryptContext will now throw UnknownHashError when it can’t identify a hash provided to methods
such as CryptContext.verify(). Previously it would throw a generic ValueError.

Deprecations

• passlib.ext.django: This extension will require Django 2.2 or newer as of Passlib 1.8.

4.3.2.2 1.7.3 (2020-10-06)

This release rolls up assorted bug & compatibility fixes since 1.7.2.

Administrative Changes

Note: Passlib has moved to Heptapod!

Due to BitBucket deprecating Mercurial support, Passlib’s public repository and issue tracker has been relocated. It’s
now located at https://foss.heptapod.net/python-libs/passlib, and is powered by Heptapod.

Hosting for this and other open-source projects graciously provided by the people at Octobus and CleverCloud!

The mailing list and documentation urls remain the same.

New Features

• ldap_salted_sha512: LDAP “salted hash” support added for SHA-256 and SHA-512 (issue 124).

Bugfixes

• bcrypt: Under python 3, OS native backend wasn’t being detected on BSD platforms. This was due to a few
internal issues in feature-detection code, which have been fixed.

• passlib.utils.safe_crypt(): Support crypt.crypt() unexpectedly returning bytes under Python
3 (issue 113).

• passlib.utils.safe_crypt(): Support crypt.crypt() throwing OSError, which can happen as
of Python 3.9 (issue 115).

• passlib.ext.django: fixed lru_cache import (django 3 compatibility)

• passlib.tests: fixed bug where HandlerCase.test_82_crypt_support() wasn’t being run on
systems lacking support for the hasher being tested. This test now runs regardless of system support.

4.3. Release History 213

https://foss.heptapod.net/python-libs/passlib/issues/128
https://foss.heptapod.net/python-libs/passlib/issues/98
https://docs.python.org/3/library/exceptions.html#ValueError
https://foss.heptapod.net/python-libs/passlib
https://heptapod.net/
https://octobus.net/
https://clever-cloud.com/
https://foss.heptapod.net/python-libs/passlib/issues/124
https://docs.python.org/3/library/crypt.html#crypt.crypt
https://foss.heptapod.net/python-libs/passlib/issues/113
https://docs.python.org/3/library/crypt.html#crypt.crypt
https://docs.python.org/3/library/exceptions.html#OSError
https://foss.heptapod.net/python-libs/passlib/issues/115

Passlib Documentation, Release 1.8.0.dev0

Deprecations

• Support for Python 2.x, 3.3, and 3.4 is deprecated; and will be dropped in Passlib 1.8.

Other Changes

• bcrypt_sha256: Internal algorithm has been changed to use HMAC-SHA256 instead of plain SHA256. This
should strengthen the hash against brute-force attempts which bypass the intermediary hash by using known-
sha256-digest lookup tables (issue 114).

• bcrypt: OS native backend (“os_crypt”) now raises the new PasswordValueError if password is pro-
vided as non-UTF8 bytes under python 3 (These can’t be passed through, due to limitation in stdlib’s crypt.
crypt()). Prior to this release, it confusingly raised MissingBackendError instead.

Also improved legacy bcrypt format workarounds, to support a few more UTF8 edge cases than before.

• Modified some internals to help run on FIPS systems (issue 116):

In particular, when MD5 hash is not available, hex_md5will now return a dummy hasher which throws an error
if used; rather than throwing an uncaught ValueError when an application attempts to import it. (Similar
behavior added for the other unsalted digest hashes).

Also, lookup_hash()’s required=False kwd was modified to report unsupported hashes via the
HashInfo.supported attribute; rather than letting ValueErrors through uncaught.

This should allow CryptContext instances to be created on FIPS systems without having a load-time error
(though they will still receive an error if an attempt is made to actually use a FIPS-disabled hash).

• Internal errors calling stdlib’s crypt.crypt(), or third party libraries, will now raise the new
InternalBackendError (a RuntimeError); where previously it would raise an AssertionError.

• Various Python 3.9 compatibility fixes (including NotImplemented-related warning, issue 125)

4.3.2.3 1.7.2 (2019-11-22)

This release rolls up assorted bug & compatibility fixes since 1.7.1.

New Features

• argon2: Now supports Argon2 “ID” and “D” hashes (assuming new enough backend library). Now defaults
to “ID” hashes instead of “I” hashes, but this can be overridden via type keyword. (issue 101)

• scrypt: Now uses python 3.6 stdlib’s hashlib.scrypt() as backend, if present (issue 86).

Bugfixes

• Python 3.8 compatibility fixes

• passlib.apache.HtpasswdFile: Now generates bcrypt hashes using the "$2y$" prefix, which should
work properly with Apache 2.4’s htpasswd tool. Previous releases used the functionally equivalent "$2b$"
prefix, which htpasswd was unable to read (issue 95).

• passlib.totp: The TOTP.to_uri() method now prepends the issuer to URI label, (per the KeyURI
spec). This should fix some compatibility issues with older TOTP clients (issue 92)

• Fixed error in argon2.parsehash() (issue 97)

214 Chapter 4. Other Documentation

https://foss.heptapod.net/python-libs/passlib/issues/114
https://foss.heptapod.net/python-libs/passlib/issues/116
https://docs.python.org/3/library/crypt.html#crypt.crypt
https://docs.python.org/3/library/exceptions.html#AssertionError
https://foss.heptapod.net/python-libs/passlib/issues/125
https://foss.heptapod.net/python-libs/passlib/issues/101
https://docs.python.org/3/library/hashlib.html#hashlib.scrypt
https://foss.heptapod.net/python-libs/passlib/issues/86
https://foss.heptapod.net/python-libs/passlib/issues/95
https://foss.heptapod.net/python-libs/passlib/issues/92
https://foss.heptapod.net/python-libs/passlib/issues/97

Passlib Documentation, Release 1.8.0.dev0

• unittests: crypt() unittests now account for linux systems running libxcrypt (such as recent Fedora releases)

Deprecations

Warning: Due to lack of pip and venv support, Passlib is no longer fully tested on Python 2.6 & 3.3. There are
no known issues, and bugfixes against these versions will still be accepted for the Passlib 1.7.x series. However,
Passlib 1.8 will drop support for Python 2.x, 3.3, & 3.4, and require Python >= 3.5.

• Support for Python 2.x, 3.3, and 3.4 is deprecated; and will be dropped in Passlib 1.8. (2020-10-06: Updated
to include all of Python 2.x, 3.3, and 3.4; when 1.7.2 was released, only Python 2.6 and 3.3 support was
deprecated)

• bcrypt: py-bcrypt and bcryptor backends are deprecated, and support will be removed in Passlib 1.8.
Please switch to the bcrypt backend.

Other Changes

• setup.py: now honors $SOURCE_DATE_EPOCH to help with reproducible builds

• argon2: Now throws helpful error if “argon2” package is actually an incompatible or supported version of
argon2_cffi (issue 99).

• documentation: Various updates & corrections. building the documentation now requires Sphinx 1.6 or newer.

4.3.2.4 1.7.1 (2017-1-30)

This release rolls up assorted bug & compatibility fixes since 1.7.0.

Bugfixes

• cisco_asa and cisco_pix: Fixed a number of issues which under certain conditions caused prior releases
to generate hashes that were unverifiable on Cisco systems.

• PasswordHash.hash()will now warn if passed any settings keywords. This usage was deprecated in 1.7.0,
but warning wasn’t properly enabled. See Customizing the Configuration for the preferred way to pass settings.

• setup.py: Don’t append timestamp when run from an sdist. This should fix some downstream build issues.

• passlib.tests.test_totp: Test suite now traps additional errors that datetime.
utcfromtimestamp() may throw under python 3, which should fix some test failures on architectures with
rarer ILP sizes. It also works around Python 3.6 bug 29100.

Deprecations

• CryptContext: The harden_verify flag has been turned into a NOOP and deprecated. It will be re-
moved in passlib 1.8 along with the already-deprecated min_verify_time (issue 83).

4.3. Release History 215

https://foss.heptapod.net/python-libs/passlib/issues/99
https://bugs.python.org/issue29100
https://foss.heptapod.net/python-libs/passlib/issues/83

Passlib Documentation, Release 1.8.0.dev0

Other Changes

• passlib.tests.utils: General truncation policy details were hammered out, and additional hasher tests
were added to enforce them.

• documentation: Various updates & corrections.

4.3.2.5 1.7.0 (2016-11-22)

Overview

Welcome to Passlib 1.7!

This release includes a number of new features, cleans up some long-standing design issues, and contains
a number of internal improvements; all part of the roadmap towards a leaner and simpler Passlib 2.0.

Highlights include:

• Support for argon2 and scrypt hashes.

• TOTP Two-Factor Authentications helpers in the passlib.totp module.

• The misnamed PasswordHash.encrypt() method has been renamed to PasswordHash.
hash() (and the old alias deprecated). This is part of a much larger project to clean up passlib’s
password hashing API, see the PasswordHash Tutorial for a walkthrough.

• Large speedup of the internal PBKDF2 routines.

• Updated documentation

Requirements

• Passlib now requires Python 2.6, 2.7, or >= 3.3. Support for Python versions 2.5 and 3.0 through 3.2 have
been dropped. Support for PyPy 1.x has also been dropped.

• The passlib.ext.django extension now requires Django 1.8 or better. Django 1.7 and earlier are no
longer supported.

New Features

New Hashes

• passlib.hash.argon2 – Support for the Argon2 password hash (issue 69).

• passlib.hash.scrypt – New password hash format which uses the SCrypt KDF (issue 8).

• passlib.hash.cisco_asa – Support for Cisco ASA 7.0 and newer hashes (issue 51). Note: this should be consid-
ered experimental, and needs verification of it’s test vectors.

New Modules

• New passlib.totp module provides full support for TOTP tokens on both client and server side. This
module contains both low-level primitives, and high-level helpers for persisting and tracking client state.

• New passlib.pwd module added to aid in password generation. Features support for alphanumeric pass-
words, or generation of phrases using the EFF’s password generation wordlist.

CryptContext Features

216 Chapter 4. Other Documentation

https://foss.heptapod.net/python-libs/passlib/issues/69
https://foss.heptapod.net/python-libs/passlib/issues/8
https://foss.heptapod.net/python-libs/passlib/issues/51

Passlib Documentation, Release 1.8.0.dev0

• The CryptContext object now has helper methods for dealing with hashes representing disabled accounts
(issue 45).

• All hashers which truncate passwords (e.g. bcrypt and des_crypt) can now be configured to raise a
PasswordTruncateError when a overly-large password is provided. This configurable via (for example)
bcrypt.using(truncate_error=True).hash(secret), or globally as an option to CryptContext
(issue 59).

Cryptographic Backends

• The pbkdf2_hmac() function and all PBKDF2-based hashes have been sped up by ~20% compared to
Passlib 1.6. For an even greater speedup, it will now take advantage of the external fastpbk2 library, or stdlib’s
hashlib.pbkdf2_hmac() (when available).

Other Changes

Other changes of note in Passlib 1.7:

• New workflows have been for configuring the hashers through PasswordHash.using(), and testing hashes
through PasswordHash.needs_update(). See the PasswordHash Tutorial for a walkthrough.

• bcrypt and bcrypt_sha256 now default to the “2b” format.

• Added support for Django’s Argon2 wrapper (django_argon2)

• passlib.apache.HtpasswdFile has been updated to support all of Apache 2.4’s hash schemes, as well
as all host OS crypt formats; allowing for much more secure hashes in htpasswd files.

You can now specify if the default hash should be compatible with apache 2.2 or 2.4, and host-specific or
portable. See the default_schemes keyword for details.

• Large parts of the documentation have been rewritten, to separate tutorial & api reference content, and provide
more detail on various features.

• Official documentation is now at https://passlib.readthedocs.io

Internal Changes

• The majority of CryptContext’s internal rounds handling & migration code has been moved to the pass-
word hashes themselves, taking advantage of the new PasswordHash.using() and PasswordHash.
needs_update() methods.

This allows much more flexibility when configuring a hasher directly, as well making it easier for CryptContext
to support hash-specific parameters.

• The shared PasswordHash unittests now check all hash handlers for basic thread-safety (motivated by the
pybcrypt 0.2 concurrency bug).

• consteq() is now wraps stdlib’s hmac.compare_digest() when available (python 2.7.11, python 3.3
and up).

Bugfixes

• bcrypt: Passlib will now detect and work around a fatal concurrency bug in py-bcrypt 0.2 and earlier (a
PasslibSecurityWarning will also be issued). Nevertheless, users are strongly encouraged to upgrade
to py-bcrypt 0.3 or another bcrypt library if you are using the bcrypt hash.

• CryptContext instances now pass contextual keywords (such as “user”) to the hashes that support them, but
ignore them for hashes that don’t (issue 63).

4.3. Release History 217

https://foss.heptapod.net/python-libs/passlib/issues/45
https://foss.heptapod.net/python-libs/passlib/issues/59
https://pypi.python.org/pypi/fastpbkdf2
https://docs.python.org/3/library/hashlib.html#hashlib.pbkdf2_hmac
https://passlib.readthedocs.io
https://docs.python.org/3/library/hmac.html#hmac.compare_digest
https://foss.heptapod.net/python-libs/passlib/issues/63

Passlib Documentation, Release 1.8.0.dev0

• The passlib.apache htpasswd helpers now preserve blank lines and comments, rather than throwing a
parse error (issue 73).

• passlib.ext.django and unittests: compatibility fixes for Django 1.9 / 1.10, and some internal refactoring
(issue 68).

• The django_disabled hash now appends a 40-char alphanumeric string, to match Django’s behavior.

Deprecations

As part of a long-range plan to restructure and simplify both the API and the internals of Passlib, a number of methods
have been deprecated & replaced. The eventually goal is a large cleanup and overhaul as part of Passlib 2.0. There will
be at least one more 1.x version before Passlib 2.0, to provide a final transitional release (see the Project Roadmap).

Password Hash API Deprecations

As part of this cleanup, the PasswordHash API (used by all hashes in passlib), has had a number of
changes:

See also:

PasswordHash Tutorial, which walks through using the new hasher interface.

• [major] The PasswordHash.encrypt() method has been renamed to PasswordHash.
hash(), to clarify that it’s performing one-way hashing rather than reversiable encryption. A
compatibility alias will remain in place until Passlib 2.0. This should fix the longstanding issue 21.

• [major] Passing explicit configuration options to the PasswordHash.encrypt() method (now
called PasswordHash.hash()) is deprecated. To provide settings such as rounds and
salt_size, callers should use the new PasswordHash.using() method, which generates
a new hasher with a customized configuration. For example, instead of:

>>> sha256_crypt.encrypt("secret", rounds=12345)

. . . applications should now use:

>>> sha256_crypt.using(rounds=12345).hash("secret")

Support for the old syntax will be removed in Passlib 2.0.

Note: This doesn’t apply to contextual options such as cisco_pix’s user keyword, which
should still be passed into the hash() method.

• [minor] The little-used PasswordHash.genhash() and PasswordHash.genconfig()
methods have been deprecated. Compatibility aliases will remain in place until Passlib 2.0, at which
point they will be removed entirely.

Crypt Context API Deprecations

Applications which use passlib’s CryptContext should not be greatly affected by this release; only
one major deprecation was made:

218 Chapter 4. Other Documentation

https://foss.heptapod.net/python-libs/passlib/issues/73
https://foss.heptapod.net/python-libs/passlib/issues/68
https://foss.heptapod.net/python-libs/passlib/wikis/roadmap
https://foss.heptapod.net/python-libs/passlib/issues/21

Passlib Documentation, Release 1.8.0.dev0

• [major] To match the PasswordHash API changes above, the CryptContext.encrypt()
method was renamed to CryptContext.hash(). A compatibility alias will remain until Passlib
2.0.

A fewer internal options and infrequently used features have been deprecated:

• [minor] CryptContext.hash(), verify(), verify_and_update(), and
needs_update(): The scheme keyword is now deprecated; support will be removed in
Passlib 2.0.

• [minor] CryptContext.hash(): Passing settings keywords to hash() such as rounds and
salt is deprecated. Code should now get ahold of the default hasher, and invoke it explicitly:

>>> # for example, calls that did this:
>>> context.hash(secret, rounds=1234)

>>> # should use this instead:
>>> context.handler().using(rounds=1234).hash(secret)

• [minor] The vary_rounds option has been deprecated, and will be removed in Passlib 2.0. It
provided very little security benefit, and was judged not worth the additional code complexity it
requires.

• [minor] The special wildcard all scheme name has been deprecated, and will be removed in Passlib
2.0. The only legitimate use was to support vary_rounds, which itself will be removed in 2.0.

Other Deprecations

A few other assorted deprecations have been made:

• The passlib.utils.generate_secret() function has been deprecated in favor of the new
passlib.pwd module, and the old function will be removed in Passlib 2.0.

• Most of passlib’s internal cryptography helpers have been moved from passlib.utils to
passlib.crypto, and the APIs refactored. This allowed unification of various hash manage-
ment routines, some speed ups to the HMAC and PBKDF2 primitives, and opens up the architecture
to support more optional backend libraries.

Compatibility wrappers will be kept in place at the old location until Passlib 2.0.

• Some deprecations and internal changes have been made to the passlib.utils.handlers
module, which provides the common framework Passlib uses to implement hashers.

Caution: More backwards-incompatible relocations are planned for the internal passlib.utils
module in the Passlib 1.8 / 1.9 releases.

Backwards Incompatibilities

Changes in existing behavior:

• [minor] M2Crypto no longer used to accelerate pbkdf2-hmac-sha1; applications relying on this to speed up
pbkdf2_sha1 should install fastpbkdf2.

Scheduled removal of features:

• [minor] passlib.context: The min_verify_time keyword that was deprecated in release 1.6, is now
completely ignored. Support will be removed entirely in release 1.8.

4.3. Release History 219

https://pypi.python.org/pypi/fastpbkdf2

Passlib Documentation, Release 1.8.0.dev0

• [trivial] passlib.hash: The internal PasswordHash.parse_rounds() method, deprecated in 1.6,
has been removed.

Minor incompatibilities:

• [minor] passlib.hash: The little-used method genconfig() will now always return a valid hash, rather
than a truncated configuration string or None.

• [minor] passlib.hash: The little-used method genhash() no longer accepts None as a config argument.

• [trivial] passlib.utils.pbkdf2.pbkdf2() no longer supports custom PRF callables. this was an un-
used feature, and prevented some useful optimizations.

4.3.3 Passlib 1.6

4.3.3.1 1.6.5 (2015-08-04)

Fixed some minor bugs in the test suite which were causing erroneous test failures (issue 57 and issue
58). The passlib library itself is unchanged.

4.3.3.2 1.6.4 (2015-07-25)

This release rolls up assorted bug & compatibility fixes since 1.6.2.

Bugfixes

• Correctly detect bcrypt 2.0. Previous releases were incorrectly detecting it as py-bcrypt, causing spurious errors
(issue 56).

• CryptContext now accepts scheme names as unicode (issue 54).

• passlib.ext.django now works correctly with Django 1.7-1.8. Previous releases had various test failures
(issue 52).

• passlib.apache.HtpasswdFile now recognizes bcrypt, sha256_crypt, sha512_crypt hashes (issue 55).

BCrypt Changes

A few changes have been made to the bcrypt hash:

• It now supports the $2b$ hash format.

• It will now issue a PasslibSecurityWarning if the active backend is vulnerable to the
wraparound bug, and automatically enable a workaround (py-bcrypt is known to be vulnerable as of
v0.4).

• It will throw a PasslibSecurityError if the active backend is vulnerable to the 8-bit bug
(none of Passlib’s backends are known to be vulnerable as of 2015-07).

• Updated documentation to indicate the cffi-based bcrypt library is now the recommended bcrypt
backend.

• Backend capability detection code refactored to rely on runtime detection rather than hardcoded
information.

220 Chapter 4. Other Documentation

https://foss.heptapod.net/python-libs/passlib/issues/57
https://foss.heptapod.net/python-libs/passlib/issues/58
https://foss.heptapod.net/python-libs/passlib/issues/58
https://foss.heptapod.net/python-libs/passlib/issues/56
https://foss.heptapod.net/python-libs/passlib/issues/54
https://foss.heptapod.net/python-libs/passlib/issues/52
https://foss.heptapod.net/python-libs/passlib/issues/55
https://pypi.python.org/pypi/bcrypt

Passlib Documentation, Release 1.8.0.dev0

Other Changes

• Source repo’s tox.ini updated. Now assumes python3 by default, and refactored test environments to more
cleanly delineate the different setups being tested.

• Passlib releases are now published as wheels instead of eggs.

4.3.3.3 1.6.3 (2015-07-25)

This was relabeled as 1.6.4 due to PyPI upload issues.

4.3.3.4 1.6.2 (2013-12-26)

Minor changes & compatibility fixes

• Re-tuned the default_rounds values for all of the hashes.

• Added the new bcrypt_sha256 hash, which wraps BCrypt using SHA256 in order to work around
BCrypt’s password size limitations (issue 43).

• passlib.hash.bcrypt: Added support for the bcrypt library as one of the possible bcrypt backends that
will be used if available. (issue 49)

• passlib.ext.django: Passlib’s Django extension (and it’s related hashes and unittests) have
been updated to handle some minor API changes in Django 1.5-1.6. They should now be compatible
with Django 1.2 and up. (issue 50)

4.3.3.5 1.6.1 (2012-08-02)

Minor bugfix release

• bugfix: Various CryptContext methods would incorrectly raise TypeError if passed a
unicode user category under Python 2. For consistency, unicode user category values are now
encoded to utf-8 bytes under Python 2.

• bugfix: Reworked internals of the CryptContext config compiler to fix a couple of border cases
(issue 39):

– It will now throw a ValueError if the default scheme is marked as deprecated.

– If no default scheme is specified, it will use the first non-deprecated scheme.

– Finally, it will now throw a ValueError if all schemes are marked as deprecated.

• bugfix: FreeBSD 8.3 added native support for sha256_crypt – updated Passlib’s unittests and
documentation accordingly (issue 35).

• bugfix: Fixed bug which caused some passlib.apache unittests to fail if mtime resolution >= 1
second (issue 35).

• bugfix: Fixed minor bug in passlib.registry, should now work correctly under Python 3.3.

• Various documentation updates and corrections.

4.3. Release History 221

https://foss.heptapod.net/python-libs/passlib/issues/43
https://pypi.python.org/pypi/bcrypt
https://foss.heptapod.net/python-libs/passlib/issues/49
https://foss.heptapod.net/python-libs/passlib/issues/50
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#bytes
https://foss.heptapod.net/python-libs/passlib/issues/39
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://foss.heptapod.net/python-libs/passlib/issues/35
https://foss.heptapod.net/python-libs/passlib/issues/35

Passlib Documentation, Release 1.8.0.dev0

4.3.3.6 1.6.0 (2012-05-01)

Overview

Welcome to Passlib 1.6.

The main goal of this release was to clean up the codebase, tighten input validation, and simplify the
publically exposed interfaces. This release also brings a number of other improvements: 10 or so new hash
algorithms, additional security precautions for the existing algorithms, a number of speed improvements,
and updated documentation.

Deprecated APIs

In order to improve the publically exposed interface, some of the more cumbersome and less-used func-
tions in Passlib have been deprecated / renamed. This should not affect 99% of applications. That
said, all the deprecated interfaces are still present, and will continue to be supported for at least one
more major release. To help with migration, all deprecated functions should issue an informative
DeprecationWarning when they are invoked, detailing their suggested replacement. The follow-
ing interfaces have changed:

• The semi-internal CryptPolicy class has been deprecated in its entirety. All functionality has
been rolled into the parent CryptContext class (see below for more).

• The interface of the passlib.apache classes has been improved: some confusing methods and
options have been renamed, some new constructors and other functions have been added.

• The (undocumented) passlib.win32 module has been deprecated, all of its functionality is now
offered through the lmhash and nthash algorithms.

New Hashes

The release adds support for a number of hash algorithms:

cisco_pix, cisco_type7 Two hash formats frequently found on various Cisco devices (for Cisco Type 5
hashes, see md5_crypt).

django_pbkdf2_sha256, django_pbkdf2_sha1, django_bcrypt All three of the new hash schemes intro-
duced in Django 1.4.

lmhash, nthash Microsoft’s legacy “Lan Manager” hash, and the replacement NT password hash. (the
old nthash algorithm in Passlib 1.5 has been renamed to bsd_nthash , to reflect its lineage).

msdcc, msdcc2 Microsoft Windows’ Domain Cached Credentials, versions 1 and 2. These algorithms
also go by the names “DCC”, “MSCache”, and “MSCash”.

mssql2000, mssql2005 Hash algorithms used by MS SQL Server 2000 and later.

scram A hash format added specifically for storing the complex digest information needed to authenticate
a user via the SCRAM protocol (RFC 5802). It can also be used in the same way as any other
password hash in Passlib.

Existing Hashes

Additionally, the following new features have been added to the existing hashes:

222 Chapter 4. Other Documentation

https://docs.python.org/3/library/exceptions.html#DeprecationWarning
https://tools.ietf.org/html/rfc5802.html

Passlib Documentation, Release 1.8.0.dev0

Password Size Limit All hashes in Passlib will now throw PasswordSizeError if handed a password
that’s larger than 4096 characters.

This limit should be larger than any reasonable password size, and prevents various things in-
cluding DOS abuses, and exploitation of OSes with a buggy crypt() implementation. See
PasswordSizeError for how to change this limit.

Constant Time Comparison All hash comparisons in Passlib now use the “constant time”1 comparison
function consteq(), instead of ==.

This change is motivated a well-known hmac timing attack which exploits short-circuit string com-
parisons. While this attack is not currently feasible against most password hashes, some of the
weaker unsalted hashes supported by Passlib may be vulnerable; and this change has been made
preventatively to all of them.

Strict Parameters Previous releases of Passlib would silently correct any invalid values (such as rounds
parameters that were out of range). This is was deemed undesirable, as it leaves developers unaware
they are requesting an incorrect (and potentially insecure) value.

Starting with this release, providing invalid values to PasswordHash.encrypt will result in a
ValueError. However, most hashes now accept an optional relaxed=True keyword, which
causes Passlib to try and correct invalid values, and if successful, issue a PasslibHashWarning
instead. These warnings can then be filtered if desired.

bcrypt The BCrypt hash now supports the crypt_blowfish project’s $2y$ hash prefix.

On an unrelated note, Passlib now offers an (experimental) pure-python implementation of BCrypt.
Unfortunately, it’s still WAY too slow to be suitable for production use; and is disabled by default. If
you really need it, see the BCrypt documentation for how to enable it.

bsdi_crypt BSDi-Crypt will now issue a PasslibSecurityWarning if an application requests an
even number of rounds, due to a known weakness in DES. Existing hashes with an even number of
rounds will now be flagged by CryptContext.needs_update().

ldap_salted_{digest} The LDAP salted digests now support salts of any size from 4-16 bytes, though they
still default to 4 (issue 30).

md5_crypt, sha256_crypt, sha512_crypt The builtin implementation of these hashes has been sped up
by about 25%, using an additional pre-computation step.

unix_disabled The unix_fallback handler has been deprecated, and will be removed in Passlib 1.8.
Applications should use the stricter-but-equivalent unix_disabled handler instead.

This most likely only affects internal Passlib code.

CryptContext

The CryptContext class has had a thorough internal overhaul. While the primary interface has not changed
at all, the internals are much stricter about input validation, common methods have shorter code-paths,
and the construction and introspection of CryptContext objects has been greatly simplified. Changes
include:

• All new (and hopefully clearer) tutorial and reference documentation.

• The CryptPolicy class and the CryptContext.policy attribute have been deprecated.

This was a semi-internal class, which most applications were not involved with at all, but to be
conservative about breaking things, the existing CryptPolicy interface will remain in-place and sup-
ported until Passlib 1.8.

1 “constant time” is a misnomer, it actually takes THETA(len(righthand_value)) time.

4.3. Release History 223

http://rdist.root.org/2009/05/28/timing-attack-in-google-keyczar-library/
https://docs.python.org/3/library/exceptions.html#ValueError
http://www.openwall.com/crypt/
https://foss.heptapod.net/python-libs/passlib/issues/30

Passlib Documentation, Release 1.8.0.dev0

All of the functionality of this class has been rolled into CryptContext itself, so there’s one less
class to remember. Many of the methods provided by CryptPolicy are now CryptContext
methods, most with the same name and call syntax. Information on migrating existing code can be
found in the deprecation warnings issued by the class itself, and in the CryptPolicy documenta-
tion.

• Two new class constructors have been added (CryptContext.from_path() and
CryptContext.from_string()) to aid in loading CryptContext objects directly from
a configuration file.

• The deprecated keyword can now be set to the special string "auto"; which will automatically
deprecate all schemes except for the default one.

• The min_verify_time keyword has been deprecated, will be ignored in release 1.7, and will be
removed in release 1.8. It was never very useful, and now complicates the internal code needlessly.

• All string parsing now uses stdlib’s SafeConfigParser.

Previous releases used the original ConfigParser interpolation; which was deprecated in Passlib
1.5, and has now been removed. This should only affect strings which contained raw % characters,
they will now need to be escaped via %%.

Other Modules

• The api for the passlib.apachemodule has been updated to add more flexibility, and to fix some ambiguous
method and keyword names. The old interface is still supported, but deprecated, and will be removed in Passlib
1.8.

• Added the django14_context preset to the the passlib.apps module. this preconfigured CryptContext
object should support all the hashes found in a typical Django 1.4 deployment.

• new: Added passlib.ext.django, a Django plugin which can be used to override Django’s password
hashing framework with a custom Passlib policy (an undocumented beta version of this was present in the 1.5
release).

• new: The passlib.utils.saslprep() function may be useful for applications which need to normalize
the unicode representation of passwords before they are hashed.

Bugfixes

• Handle platform-specific error strings that may be returned by the crypt() methods of some OSes.

• Fixed rare 'NoneType' object has no attribute 'decode' error that sometimes occurred on
platforms with a deviant implementation of crypt().

Internal Changes

The following changes should not affect most end users, and have been documented just to keep track of
them:

• Passlib is now source-compatible with Python 2.5+ and Python 3.x. It no longer requires the use of
the 2to3 command to translate it for Python 3.

• The unittest suite has been rewritten. It handles a number of additional border cases, enforcing
uniform behavior across all hashes, and even features the addition of some simplistic fuzz testing.
It will take a bit longer to run though. While not perfect, statement coverage is at about 95%.

224 Chapter 4. Other Documentation

Passlib Documentation, Release 1.8.0.dev0

Additionally, the hash test suite has been enhanced with many more test vectors across the board,
including 8-bit test vectors.

• The internal framework used to construct the hash classes (passlib.utils.handlers) was
rewritten drastically. The new version provides stricter input checking, reduction in boilerplate
code. These changes should not affect any publically exposed routines.

– GenericHandler’s strict keyword was removed, strict=True is now the class’s de-
fault behavior: all values must be specified, and be within the correct bounds. The new key-
words use_defaults and relaxed can be used to disable these two requirements.

– Most of the private methods of GenericHandler were renamed to begin with an underscore,
to clarify their status; and turned into instance methods, to simplify the internals. (for example,
norm_salt was renamed to _norm_salt).

– StaticHandler now derives from GenericHandler, and requires
_calc_checksum() be implemented instead of encrypt(). The old style is sup-
ported but deprecated, and support will be removed in Passlib 1.8.

– Calls to HasManyBackends.set_backend() should now use the string "any" instead
of the value None. None was deprecated in release 1.5, and is no longer supported.

• passlib.utils.h64 has been replaced by an instance of the new Base64Engine class. This
instance is imported under the same name, and has (mostly) the same interface; but should be faster,
more flexible, and better unit-tested.

• deprecated some unused support functions within passlib.utils, they will be removed in re-
lease 1.7.

4.3.4 Passlib 1.5

4.3.4.1 1.5.3 (2011-10-08)

Bugfix release – fixes BCrypt padding/verification issue (issue 25)

This release fixes a single issue with Passlib’s BCrypt support: Many BCrypt hashes generated by
Passlib (<= 1.5.2) will not successfully verify under some of the other BCrypt implementations, such
as OpenBSD’s /etc/master.passwd.

In detail:

BCrypt hashes contain 4 “padding” bits in the encoded salt, and Passlib (<= 1.5.2) generated
salts in a manner which frequently set some of the padding bits to 1. While Passlib ignores
these bits, many BCrypt implementations perform password verification in a way which rejects
all passwords if any of the padding bits are set. Thus Passlib’s BCrypt salt generation needed
to be fixed to ensure compatibility, and a route provided to correct existing hashes already out
in the wild issue 25.

Changes in this release:

• BCrypt hashes generated by Passlib now have all padding bits cleared.

• Passlib will continue to accept BCrypt hashes that have padding bits set, but when it encounters
them, it will issue a UserWarning recommending that the hash should be fixed (see below).

• Applications which use CryptContext.verify_and_update() will have any such hashes
automatically re-encoded the next time the user logs in.

To fix existing hashes:

4.3. Release History 225

https://foss.heptapod.net/python-libs/passlib/issues/25
https://foss.heptapod.net/python-libs/passlib/issues/25
https://docs.python.org/3/library/exceptions.html#UserWarning

Passlib Documentation, Release 1.8.0.dev0

If you have BCrypt hashes which might have their padding bits set, you can import passlib.
hash.bcrypt, and call clean_hash = bcrypt.normhash(hash). This function
will clear the padding bits of any BCrypt hashes, and should leave all other strings alone.

4.3.4.2 1.5.2 (2011-09-19)

Minor bugfix release – mainly Django-related fixes

Hashes

• bugfix: django_des_crypt now accepts all hash64 characters in its salts; previously it ac-
cepted only lower-case hexadecimal characters (issue 22).

• Additional unittests added for all standard Django hashes.

• django_des_crypt now rejects hashes where salt and checksum containing mismatched salt
characters.

CryptContext

• bugfix: fixed exception in CryptPolicy.iter_config() that occurred when iterating over
deprecation options.

• Added documentation for the (mistakenly undocumented) CryptContext.
verify_and_update() method.

4.3.4.3 1.5.1 (2011-08-17)

Minor bugfix release – now compatible with Google App Engine.

• bugfix: make passlib.hash.__loader__ attribute writable - needed by Google App Engine
(GAE) issue 19.

• bugfix: provide fallback for loading passlib/default.cfg if pkg_resources is not
present, such as for GAE issue 19.

• bugfix: fixed error thrown by CryptContext.verify when issuing min_verify_time warning issue 17.

• removed min_verify_time setting from custom_app_context, min_verify_time is too host & load
dependant to be hardcoded issue 17.

• under GAE, disable all unittests which require writing to filesystem.

• more unittest coverage for passlib.apps and passlib.hosts.

• improved version datestamps in build script.

4.3.4.4 1.5.0 (2011-07-11)

“20% more unicode than the leading breakfast cereal”

The main new feature in this release is that Passlib now supports Python 3 (via the 2to3 tool). Everything has been
recoded to have better separation between unicode and bytes, and to use unicode internally where possible. When run
under Python 2, Passlib 1.5 attempts to provide the same behavior as Passlib 1.4; but when run under Python 3, most
functions will return unicode instead of ascii bytes.

Besides this major change, there have been some other additions:

226 Chapter 4. Other Documentation

https://foss.heptapod.net/python-libs/passlib/issues/22
https://foss.heptapod.net/python-libs/passlib/issues/19
https://foss.heptapod.net/python-libs/passlib/issues/19
https://foss.heptapod.net/python-libs/passlib/issues/17
https://foss.heptapod.net/python-libs/passlib/issues/17

Passlib Documentation, Release 1.8.0.dev0

Hashes

• added support for Cryptacular’s PBKDF2 format.

• added support for the FSHP family of hashes.

• added support for using BCryptor as BCrypt backend.

• added support for all of Django’s hash formats.

CryptContext

• interpolation deprecation:

CryptPolicy.from_path() and CryptPolicy.from_string() now use SafeConfigParser
instead of ConfigParser. This may cause some existing config files containing unescaped % to result in
errors; Passlib 1.5 will demote these to warnings, but any extant config files should be updated, as the errors will
be fatal in Passlib 1.6.

• added encoding keyword to CryptPolicy’s .from_path(), .from_string(), and .to_string()
methods.

• both classes in passlib.apache now support specifying an encoding for the username/realm.

Documentation

• Password Hash API expanded to include explicit unicode vs bytes policy.

• Added quickstart guide to documentation.

• Various minor improvements.

Internal Changes

• Added more handler utility functions to reduce code duplication.

• Expanded kdf helpers in passlib.utils.pbkdf2.

• Removed deprecated parts of passlib.utils.handlers.

• Various minor changes to passlib.utils.handlers.HasManyBackends; main change is that multi-
backend handlers now raise MissingBackendError if no backends are available.

• Builtin tests now use unittest2 if available.

• Setup script no longer requires distribute or setuptools.

• added (undocumented, experimental) Django app for overriding Django’s default hash format, see docs/lib/
passlib.ext.django.rst for more.

4.3.5 Passlib 1.4 & Earlier

4.3.5.1 1.4 (2011-05-04)

This release contains a large number of changes, both large and small. It adds a number of PBKDF2-based schemes,
better support for LDAP-format hashes, improved documentation, and faster load times. In detail. . .

4.3. Release History 227

Passlib Documentation, Release 1.8.0.dev0

Hashes

• added LDAP {CRYPT} support for all hashes known to be supported by OS crypt()

• added 3 custom PBKDF2 schemes for general use, as well as 3 LDAP-compatible versions.

• added support for Dwayne Litzenberger’s PBKDF2 scheme.

• added support for Grub2’s PBKDF2 hash scheme.

• added support for Atlassian’s PBKDF2 password hash

• added support for all hashes used by the Roundup Issue Tracker

• bsdi_crypt, sha1_crypt now check for OS crypt() support

• salt_size keyword added to encrypt() method of all the hashes which support variable-length salts.

• security fix: disabled unix_fallback’s “wildcard password” support unless explicitly enabled by user.

CryptContext

• host_context now dynamically detects which formats OS crypt() supports, instead of guessing based on
sys.platform.

• added predefined context for Roundup Issue Tracker database.

• added CryptContext.verify_and_update() convenience method, to make it easier to perform both operations at
once.

• bugfix: fixed NameError in category+min_verify_time border case

• apps & hosts modules now use new LazyCryptContext wrapper class - this should speed up initial import,
and reduce memory by not loading unneeded hashes.

Documentation

• greatly expanded documentation on how to use CryptContexts.

• roughly documented framework for writing & testing custom password handlers.

• various minor improvements.

Internals

• added generate_password() convenience method

• refactored framework for building hash handlers, using new mixin-based system.

• deprecated old handler framework - will remove in 1.5

• deprecated list_to_bytes & bytes_to_list - not used, will remove in 1.5

Other

• password hash api - as part of cleaning up optional attributes specification, renamed a number of them to reduce
ambiguity:

– renamed {xxx}_salt_chars attributes -> xxx_salt_size

228 Chapter 4. Other Documentation

Passlib Documentation, Release 1.8.0.dev0

– renamed salt_charset -> salt_chars

– old attributes still present, but deprecated - will remove in 1.5

• password hash api - tightened specifications for salt & rounds parameters, added support for hashes w/ no max
salt size.

• improved password hash api conformance tests

• PyPy compatibility

4.3.5.2 1.3.1 (2011-03-28)

Minor bugfix release.

• bugfix: replaced “sys.maxsize” reference that was failing under py25

• bugfix: fixed default_rounds>max_rounds border case that could cause ValueError during Crypt-
Context.encrypt()

• minor documentation changes

• added instructions for building html documentation from source

4.3.5.3 1.3 (2011-03-25)

First public release.

• documentation completed

• 99% unittest coverage

• some refactoring and lots of bugfixes

• added support for a number of additional password schemes: bigcrypt, crypt16, sun md5 crypt,
nthash, lmhash, oracle10 & 11, phpass, sha1, generic hex digests, ldap digests.

4.3.5.4 1.2 (2011-01-06)

Note: For this and all previous versions, Passlib did not exist independently, but as a subpackage of BPS,
a private & unreleased toolkit library.

• many bugfixes

• global registry added

• transitional release for applications using BPS library.

• first truly functional release since splitting from BPS library (see below).

4.3.5.5 1.0 (2009-12-11)

• CryptContext & CryptHandler framework

• added support for: des-crypt, bcrypt (via py-bcrypt), postgres, mysql

• added unit tests

4.3. Release History 229

Passlib Documentation, Release 1.8.0.dev0

4.3.5.6 0.5 (2008-05-10)

• initial production version

• consolidated from code scattered across multiple applications

• MD5-Crypt, SHA256-Crypt, SHA512-Crypt support

See also:

See the Project Roadmap for a list of future changes that may impact applications.

4.4 Copyrights & Licenses

4.4.1 Credits

Passlib is primarily developed by Eli Collins.

Special thanks to Darin Gordon for testing and feedback on the passlib.totp module.

4.4.2 License for Passlib

Passlib is (c) Assurance Technologies, and is released under the BSD license:

Passlib
Copyright (c) 2008-2020 Assurance Technologies, LLC.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of Assurance Technologies, nor the names of the
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

230 Chapter 4. Other Documentation

https://foss.heptapod.net/python-libs/passlib/wikis/roadmap
http://www.assurancetechnologies.com
http://www.opensource.org/licenses/bsd-license.php

Passlib Documentation, Release 1.8.0.dev0

4.4.3 Licenses for incorporated software

Passlib contains some code derived from the following sources:

4.4.3.1 MD5-Crypt

The source file passlib/handlers/md5_crypt.py contains code derived from the original FreeBSD md5-
crypt implementation, which is available under the following license:

"THE BEER-WARE LICENSE" (Revision 42):
<phk@login.dknet.dk> wrote this file. As long as you retain this notice you
can do whatever you want with this stuff. If we meet some day, and you think
this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp

converted to python May 2008
by Eli Collins

4.4.3.2 DES

The source file passlib/crypto/des.py contains code derived from UnixCrypt.java, a pure-java implementa-
tion of the historic unix-crypt password hash algorithm. It is available under the following license:

UnixCrypt.java 0.9 96/11/25
Copyright (c) 1996 Aki Yoshida. All rights reserved.
Permission to use, copy, modify and distribute this software
for non-commercial or commercial purposes and without fee is
hereby granted provided that this copyright notice appears in
all copies.

modified April 2001
by Iris Van den Broeke, Daniel Deville

modified Aug 2005
by Greg Wilkins (gregw)

converted to python Jun 2009
by Eli Collins

4.4.3.3 jBCrypt

The source file passlib/crypto/_blowfish/base.py contains code derived from jBcrypt 0.2, a Java imple-
mentation of the BCrypt password hash algorithm. It is available under a BSD/ISC license:

Copyright (c) 2006 Damien Miller <djm@mindrot.org>

Permission to use, copy, modify, and distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES

(continues on next page)

4.4. Copyrights & Licenses 231

http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/lib/libcrypt/crypt.c?rev=1.2
http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/lib/libcrypt/crypt.c?rev=1.2
http://www.dynamic.net.au/christos/crypt/UnixCrypt2.txt
http://www.mindrot.org/projects/jBCrypt/

Passlib Documentation, Release 1.8.0.dev0

(continued from previous page)

WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTUOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

4.4.3.4 Wordsets

The EFF wordsets in passlib/_data/wordsets are (c) 2016 the Electronic Freedom Foundation. They were
downloaded from https://www.eff.org/deeplinks/2016/07/new-wordlists-random-passphrases, and are released under
the Creative Commons License.

• General Index

• Module List

232 Chapter 4. Other Documentation

https://www.eff.org/deeplinks/2016/07/new-wordlists-random-passphrases
https://www.eff.org/copyright

Python Module Index

a
passlib.apache, 40
passlib.apps, 46

c
passlib.context, 50
passlib.crypto, 65
passlib.crypto.des, 67
passlib.crypto.digest, 65

e
passlib.exc, 68
passlib.ext.django, 71
passlib.ext.django.models, 73
passlib.ext.django.utils, 73

h
passlib.hash, 74
passlib.hosts, 161

i
passlib.ifc, 162

p
passlib.pwd, 170

r
passlib.registry, 174

t
passlib.totp, 176

u
passlib.utils, 187
passlib.utils.binary, 201
passlib.utils.des, 203
passlib.utils.handlers, 191
passlib.utils.pbkdf2, 205

233

Passlib Documentation, Release 1.8.0.dev0

234 Python Module Index

Index

Symbols
_calc_checksum() (passlib.utils.handlers.GenericHandler

method), 194
_generate_salt() (passlib.utils.handlers.HasSalt

class method), 196
_hash_regex (passlib.utils.handlers.GenericHandler

attribute), 193
_norm_checksum() (passlib.utils.handlers.GenericHandler

method), 194
_norm_rounds() (passlib.utils.handlers.HasRounds

class method), 197
_norm_salt() (passlib.utils.handlers.HasSalt class

method), 196
_stub_checksum (passlib.utils.handlers.GenericHandler

attribute), 193

A
ab64_decode() (in module passlib.utils.binary), 203
ab64_encode() (in module passlib.utils.binary), 203
alg (passlib.totp.TOTP attribute), 179
aliases (passlib.crypto.digest.HashInfo attribute), 66
Apache

htdigest, 43
htpasswd, 40
md5 password hash, 115

AppWallet (class in passlib.totp), 185
apr_md5_crypt (class in passlib.hash), 116
argon2 (class in passlib.hash), 102
Atlassian

pbkdf2 hash, 125
atlassian_pbkdf2_sha1 (class in passlib.hash),

125
autosave (passlib.apache.HtdigestFile attribute), 46
autosave (passlib.apache.HtpasswdFile attribute), 43

B
b32decode() (in module passlib.utils.binary), 203
b32encode() (in module passlib.utils.binary), 203
b64s_decode() (in module passlib.utils.binary), 203

b64s_encode() (in module passlib.utils.binary), 203
base32_key (passlib.totp.TOTP attribute), 179
BASE64_CHARS (in module passlib.utils.binary), 201
Base64Engine (class in passlib.utils.binary), 201
bcrypt (class in passlib.hash), 75
BCRYPT_CHARS (in module passlib.utils.binary), 201
bcrypt_sha256 (class in passlib.hash), 105
big (passlib.utils.binary.Base64Engine attribute), 203
bigcrypt (class in passlib.hash), 97
block_size (passlib.crypto.digest.HashInfo attribute),

66
bsd_nthash (in module passlib.hash), 141
bsdi_crypt (class in passlib.hash), 95
bytemap (passlib.utils.binary.Base64Engine attribute),

203
bytes_to_int() (in module passlib.utils), 189

C
cache_seconds (passlib.totp.TotpMatch attribute),

182
cache_time (passlib.totp.TotpMatch attribute), 182
changed (passlib.totp.TOTP attribute), 179
charmap (passlib.utils.binary.Base64Engine attribute),

203
check_password() (passlib.apache.HtdigestFile

method), 45
check_password() (passlib.apache.HtpasswdFile

method), 42
checksum (passlib.utils.handlers.GenericHandler at-

tribute), 194
checksum_chars (passlib.utils.handlers.GenericHandler

attribute), 193
checksum_size (passlib.utils.handlers.GenericHandler

attribute), 193
Cisco

ASA hash, 151
PIX hash, 148
Type 5 hash, 83
Type 7 hash, 145

cisco_asa (class in passlib.hash), 149

235

Passlib Documentation, Release 1.8.0.dev0

cisco_pix (class in passlib.hash), 149
cisco_type7 (class in passlib.hash), 146
const (passlib.crypto.digest.HashInfo attribute), 66
consteq() (in module passlib.utils), 188
context_changed() (in module

passlib.ext.django.models), 73
context_kwds (passlib.context.CryptContext at-

tribute), 63
context_kwds (passlib.ifc.PasswordHash attribute),

169
copy() (passlib.context.CryptContext method), 60
counter (passlib.totp.TotpMatch attribute), 182
counter (passlib.totp.TotpToken attribute), 180
crypt16 (class in passlib.hash), 99
CryptContext

keyword options, 50
overview, 17
reference, 50
usage examples, 18

CryptContext (class in passlib.context), 50
cta_pbkdf2_sha1 (class in passlib.hash), 117
custom hash handler

implementing, 191
requirements, 12, 162
testing, 199

custom_app_context (in module passlib.apps), 49

D
decode() (passlib.hash.cisco_type7 class method), 146
decode_bytes() (passlib.utils.binary.Base64Engine

method), 202
decode_int12() (passlib.utils.binary.Base64Engine

method), 202
decode_int24() (passlib.utils.binary.Base64Engine

method), 202
decode_int6() (passlib.utils.binary.Base64Engine

method), 202
decode_int64() (passlib.utils.binary.Base64Engine

method), 202
decode_transposed_bytes()

(passlib.utils.binary.Base64Engine method),
202

decrypt_key() (passlib.totp.AppWallet method), 186
default_realm (passlib.apache.HtdigestFile at-

tribute), 46
default_rounds (passlib.ifc.PasswordHash at-

tribute), 170
default_rounds (passlib.utils.handlers.HasRounds

attribute), 196
default_salt_chars

(passlib.utils.handlers.HasSalt attribute),
195

default_salt_size (passlib.ifc.PasswordHash at-
tribute), 170

default_salt_size (passlib.utils.handlers.HasSalt
attribute), 195

default_scheme() (passlib.context.CryptContext
method), 62

default_tag (passlib.totp.AppWallet attribute), 186
delete() (passlib.apache.HtdigestFile method), 46
delete() (passlib.apache.HtpasswdFile method), 43
delete_realm() (passlib.apache.HtdigestFile

method), 46
derive_digest() (passlib.hash.scram class

method), 111
des_crypt (class in passlib.hash), 92
des_encrypt_block() (in module

passlib.crypto.des), 68
des_encrypt_block() (in module passlib.utils.des),

204
des_encrypt_int_block() (in module

passlib.crypto.des), 68
des_encrypt_int_block() (in module

passlib.utils.des), 204
digest_size (passlib.crypto.digest.HashInfo at-

tribute), 66
digits (passlib.totp.TOTP attribute), 179
disable() (passlib.context.CryptContext method), 59
Django

crypt context, 47
hash formats, 152
password hashing plugin, 71

django10_context (in module passlib.apps), 47
django14_context (in module passlib.apps), 47
django16_context (in module passlib.apps), 47
django_argon2 (class in passlib.hash), 152
django_bcrypt (in module passlib.hash), 154
django_bcrypt_sha256 (class in passlib.hash), 152
django_context (in module passlib.apps), 47
django_des_crypt (class in passlib.hash), 157
django_disabled (class in passlib.hash), 157
django_pbkdf2_sha1 (class in passlib.hash), 154
django_pbkdf2_sha256 (class in passlib.hash), 153
django_salted_md5 (class in passlib.hash), 155
django_salted_sha1 (class in passlib.hash), 156
dlitz_pbkdf2_sha1 (class in passlib.hash), 118
Drupal

crypt context, 48
dummy_verify() (passlib.context.CryptContext

method), 56

E
enable() (passlib.context.CryptContext method), 59
encode_bytes() (passlib.utils.binary.Base64Engine

method), 202
encode_int12() (passlib.utils.binary.Base64Engine

method), 202

236 Index

Passlib Documentation, Release 1.8.0.dev0

encode_int24() (passlib.utils.binary.Base64Engine
method), 202

encode_int6() (passlib.utils.binary.Base64Engine
method), 202

encode_int64() (passlib.utils.binary.Base64Engine
method), 202

encode_transposed_bytes()
(passlib.utils.binary.Base64Engine method),
202

encoding
PasswordHash keyword, 169

encrypt() (passlib.context.CryptContext method), 55
encrypt() (passlib.ifc.PasswordHash class method),

164
encrypt_key() (passlib.totp.AppWallet method), 186
environmental variable

PASSLIB_BUILTIN_BCRYPT, 76
PASSLIB_MAX_PASSWORD_SIZE, 69
PASSLIB_TEST_MODE, 6

expand_des_key() (in module passlib.crypto.des),
67

expand_des_key() (in module passlib.utils.des), 204
expected_counter (passlib.totp.TotpMatch at-

tribute), 182
expire_time (passlib.exc.UsedTokenError attribute),

70
expire_time (passlib.totp.TotpMatch attribute), 182
expire_time (passlib.totp.TotpToken attribute), 180
extract_digest_algs() (passlib.hash.scram class

method), 111
extract_digest_info() (passlib.hash.scram class

method), 111

F
freebsd_context (in module passlib.hosts), 162
from_dict() (passlib.totp.TOTP class method), 178
from_json() (passlib.totp.TOTP class method), 178
from_path() (passlib.context.CryptContext class

method), 60
from_source() (passlib.totp.TOTP class method),

177
from_string() (passlib.apache.HtdigestFile class

method), 46
from_string() (passlib.apache.HtpasswdFile class

method), 43
from_string() (passlib.context.CryptContext class

method), 59
from_string() (passlib.utils.handlers.GenericHandler

class method), 194
from_uri() (passlib.totp.TOTP class method), 177
fshp, 126
fshp (class in passlib.hash), 127

G
genconfig() (passlib.context.CryptContext method),

57
genconfig() (passlib.ifc.PasswordHash class

method), 165
genconfig() (passlib.utils.handlers.GenericHandler

class method), 194
generate() (passlib.totp.TOTP method), 180
generate_password() (in module passlib.utils),

190
generate_secret() (in module passlib.totp), 187
GenericHandler (class in passlib.utils.handlers), 193
genhash() (passlib.context.CryptContext method), 57
genhash() (passlib.ifc.PasswordHash class method),

166
genhash() (passlib.utils.handlers.GenericHandler

class method), 194
genphrase() (in module passlib.pwd), 172
genword() (in module passlib.pwd), 171
get_crypt_handler() (in module passlib.registry),

174
get_hash() (passlib.apache.HtdigestFile method), 45
get_hash() (passlib.apache.HtpasswdFile method),

42
get_preset_config() (in module

passlib.ext.django.utils), 73
get_prf() (in module passlib.utils.pbkdf2), 206
get_secret() (passlib.totp.AppWallet method), 186
getrandbytes() (in module passlib.utils), 190
getrandstr() (in module passlib.utils), 190
Google App Engine

compatibility, 5
recommended hash algorithm, 10

grub_pbkdf2_sha512 (class in passlib.hash), 158

H
h64 (in module passlib.utils.binary), 203
h64big (in module passlib.utils.binary), 203
handler() (passlib.context.CryptContext method), 62
HandlerCase (class in passlib.tests.utils), 200
has_rounds_info() (in module passlib.utils), 191
has_salt_info() (in module passlib.utils), 191
has_secrets (passlib.totp.AppWallet attribute), 186
hash() (passlib.context.CryptContext method), 55
hash() (passlib.ifc.PasswordHash class method), 163
hash() (passlib.utils.handlers.GenericHandler class

method), 194
HASH64_CHARS (in module passlib.utils.binary), 201
hash_needs_update()

(passlib.context.CryptContext method), 58
HashInfo (class in passlib.crypto.digest), 66
HasManyBackends (class in passlib.utils.handlers),

198
HasManyIdents (class in passlib.utils.handlers), 197

Index 237

Passlib Documentation, Release 1.8.0.dev0

HasRawChecksum (class in passlib.utils.handlers), 198
HasRawSalt (class in passlib.utils.handlers), 198
HasRounds (class in passlib.utils.handlers), 196
HasSalt (class in passlib.utils.handlers), 195
hex_key (passlib.totp.TOTP attribute), 179
hex_md4 (class in passlib.hash), 159
hex_md5 (class in passlib.hash), 159
hex_sha1 (class in passlib.hash), 159
hex_sha256 (class in passlib.hash), 159
hex_sha512 (class in passlib.hash), 159
host_context (in module passlib.hosts), 162
HtdigestFile (class in passlib.apache), 44
HtpasswdFile (class in passlib.apache), 40

I
iana_name (passlib.crypto.digest.HashInfo attribute),

66
ident

PasswordHash keyword, 169
ident (passlib.utils.handlers.GenericHandler at-

tribute), 193
identify() (passlib.context.CryptContext method),

56
identify() (passlib.ifc.PasswordHash class method),

167
identify() (passlib.utils.handlers.GenericHandler

class method), 194
implementing

custom hash handler, 191
int_to_bytes() (in module passlib.utils), 189
InternalBackendError, 69
InvalidTokenError, 70
is_ascii_codec() (in module passlib.utils), 189
is_ascii_safe() (in module passlib.utils), 189
is_crypt_context() (in module passlib.utils), 191
is_crypt_handler() (in module passlib.utils), 191
is_enabled() (passlib.context.CryptContext

method), 59
is_same_codec() (in module passlib.utils), 189
issuer (passlib.totp.TOTP attribute), 179

K
key (passlib.totp.TOTP attribute), 179

L
label (passlib.totp.TOTP attribute), 179
LAN Manager hash, 138
LazyCryptContext (class in passlib.context), 64
ldap_bcrypt (class in passlib.hash), 124
ldap_bsdi_crypt (class in passlib.hash), 124
ldap_context (in module passlib.apps), 48
ldap_des_crypt (class in passlib.hash), 124
ldap_hex_md5 (class in passlib.hash), 124
ldap_hex_sha1 (class in passlib.hash), 124

ldap_md5 (class in passlib.hash), 120
ldap_md5_crypt (class in passlib.hash), 124
ldap_nocrypt_context (in module passlib.apps),

48
ldap_pbkdf2_sha1 (class in passlib.hash), 125
ldap_pbkdf2_sha256 (class in passlib.hash), 125
ldap_pbkdf2_sha512 (class in passlib.hash), 125
ldap_plaintext (class in passlib.hash), 122
ldap_salted_md5 (class in passlib.hash), 120
ldap_salted_sha1 (class in passlib.hash), 121
ldap_salted_sha256 (class in passlib.hash), 121
ldap_salted_sha512 (class in passlib.hash), 121
ldap_sha1 (class in passlib.hash), 120
ldap_sha1_crypt (class in passlib.hash), 124
ldap_sha256_crypt (class in passlib.hash), 124
ldap_sha512_crypt (class in passlib.hash), 124
linux_context (in module passlib.hosts), 162
list_crypt_handlers() (in module

passlib.registry), 174
lmhash (class in passlib.hash), 139
load() (passlib.apache.HtdigestFile method), 44
load() (passlib.apache.HtpasswdFile method), 42
load() (passlib.context.CryptContext method), 61
load_if_changed() (passlib.apache.HtdigestFile

method), 44
load_if_changed() (passlib.apache.HtpasswdFile

method), 42
load_path() (passlib.context.CryptContext method),

61
load_string() (passlib.apache.HtdigestFile

method), 45
load_string() (passlib.apache.HtpasswdFile

method), 42
lookup_hash() (in module passlib.crypto.digest), 65

M
MalformedTokenError, 70
match() (passlib.totp.TOTP method), 180
max_rounds (passlib.ifc.PasswordHash attribute), 170
max_rounds (passlib.utils.handlers.HasRounds at-

tribute), 196
max_salt_size (passlib.ifc.PasswordHash attribute),

170
max_salt_size (passlib.utils.handlers.HasSalt

attribute), 195
max_size (passlib.exc.PasswordSizeError attribute),

69
max_size (passlib.exc.PasswordTruncateError at-

tribute), 69
md5_crypt (class in passlib.hash), 84
min_rounds (passlib.ifc.PasswordHash attribute), 170
min_rounds (passlib.utils.handlers.HasRounds at-

tribute), 196

238 Index

Passlib Documentation, Release 1.8.0.dev0

min_salt_size (passlib.ifc.PasswordHash attribute),
170

min_salt_size (passlib.utils.handlers.HasSalt
attribute), 195

MissingBackendError, 69
modular crypt format, 208

known identifiers, 209
mscache, see msdcc
mscash, see msdcc
msdcc (class in passlib.hash), 143
msdcc2 (class in passlib.hash), 144
mssql2000 (class in passlib.hash), 129
mssql2005 (class in passlib.hash), 131
MySQL

crypt context, 48
OLD_PASSWORD(), 132
PASSWORD(), 133

mysql323 (class in passlib.hash), 132
mysql3_context (in module passlib.apps), 48
mysql41 (class in passlib.hash), 133
mysql_context (in module passlib.apps), 48

N
name (passlib.crypto.digest.HashInfo attribute), 66
name (passlib.ifc.PasswordHash attribute), 168
needs_update() (passlib.context.CryptContext

method), 58
needs_update() (passlib.ifc.PasswordHash class

method), 167
netbsd_context (in module passlib.hosts), 162
new() (passlib.totp.TOTP class method), 177
norm_hash_name() (in module

passlib.crypto.digest), 65
normalize_time() (passlib.totp.TOTP class

method), 185
normalize_token() (passlib.totp.TOTP method),

184
nthash (class in passlib.hash), 141

O
openbsd_context (in module passlib.hosts), 162
oracle10 (class in passlib.hash), 135
oracle11 (class in passlib.hash), 137

P
Passlib

recommended hash algorithms, 9
passlib.apache (module), 40
passlib.apps (module), 46
passlib.context (module), 50
passlib.crypto (module), 65
passlib.crypto.des (module), 67
passlib.crypto.digest (module), 65
passlib.exc (module), 68

passlib.ext.django (module), 71
passlib.ext.django.models (module), 73
passlib.ext.django.utils (module), 73
passlib.hash (module), 74
passlib.hosts (module), 161
passlib.ifc (module), 162
passlib.pwd (module), 170
passlib.registry (module), 174
passlib.totp (module), 176
passlib.utils (module), 187
passlib.utils.binary (module), 201
passlib.utils.des (module), 203
passlib.utils.handlers (module), 191
passlib.utils.pbkdf2 (module), 205
PASSLIB_BUILTIN_BCRYPT

environmental variable, 76
PASSLIB_DEFAULT (in module

passlib.ext.django.utils), 73
PASSLIB_MAX_PASSWORD_SIZE

environmental variable, 69
PASSLIB_TEST_MODE

environmental variable, 6
PasslibConfigWarning, 70
PasslibHashWarning, 71
PasslibRuntimeWarning, 71
PasslibSecurityError, 69
PasslibSecurityWarning, 71
PasslibWarning, 70
password_context (in module

passlib.ext.django.models), 73
PasswordHash (class in passlib.ifc), 163
PasswordHash interface, 12, 162
PasswordSizeError, 69
PasswordTruncateError, 69
PasswordValueError, 69
path (passlib.apache.HtdigestFile attribute), 46
path (passlib.apache.HtpasswdFile attribute), 43
pbkdf1() (in module passlib.crypto.digest), 66
pbkdf1() (in module passlib.utils.pbkdf2), 205
pbkdf2 hash

Atlassian, 125
Cryptacular, 116
dlitz, 117
generic ldap, 125
generic mcf, 107
grub, 158

pbkdf2() (in module passlib.utils.pbkdf2), 205
PBKDF2_BACKENDS (in module passlib.crypto.digest),

67
pbkdf2_hmac() (in module passlib.crypto.digest), 67
pbkdf2_sha1 (class in passlib.hash), 108
pbkdf2_sha256 (class in passlib.hash), 108
pbkdf2_sha512 (class in passlib.hash), 108
period (passlib.totp.TOTP attribute), 179

Index 239

Passlib Documentation, Release 1.8.0.dev0

PHPass
crypt context, 48
portable hash, 106

phpass (class in passlib.hash), 106
phpass_context (in module passlib.apps), 48
phpBB3

crypt context, 48
PHPass hash, 106

phpbb3_context (in module passlib.apps), 48
plaintext (class in passlib.hash), 160
Postgres

crypt context, 49
md5 hash, 133

postgres_context (in module passlib.apps), 49
postgres_md5 (class in passlib.hash), 134
PrefixWrapper (class in passlib.utils.handlers), 199
pretty_key() (passlib.totp.TOTP method), 183

R
realms() (passlib.apache.HtdigestFile method), 45
register_crypt_handler() (in module

passlib.registry), 175
register_crypt_handler_path() (in module

passlib.registry), 174
relaxed

PasswordHash keyword, 169
remaining (passlib.totp.TotpToken attribute), 180
render_bytes() (in module passlib.utils), 189
RFC

RFC 2307, 119, 123, 124
RFC 2898, 67, 107, 125, 206
RFC 4013, 188
RFC 5802, 109, 112, 222
RFC 5803, 112
RFC 6238, 8, 26, 176, 177

rng (in module passlib.utils), 190
rounds

choosing the right value, 17
PasswordHash keyword, 168

rounds (passlib.utils.handlers.HasRounds attribute),
197

rounds_cost (passlib.ifc.PasswordHash attribute),
170

rounds_cost (passlib.utils.handlers.HasRounds at-
tribute), 197

Roundup
crypt context, 49

roundup10_context (in module passlib.apps), 49
roundup15_context (in module passlib.apps), 49
roundup_context (in module passlib.apps), 49
roundup_plaintext (class in passlib.hash), 124

S
salt

PasswordHash keyword, 168
salt (passlib.utils.handlers.HasSalt attribute), 196
salt_chars (passlib.ifc.PasswordHash attribute), 170
salt_chars (passlib.utils.handlers.HasSalt attribute),

195
salt_size

PasswordHash keyword, 168
saslprep() (in module passlib.utils), 188
save() (passlib.apache.HtdigestFile method), 45
save() (passlib.apache.HtpasswdFile method), 42
schemes() (passlib.context.CryptContext method), 62
scram (class in passlib.hash), 110
SCRAM protocol, 109
scrypt (class in passlib.hash), 114
set_password() (passlib.apache.HtdigestFile

method), 45
set_password() (passlib.apache.HtpasswdFile

method), 43
setting_kwds (passlib.ifc.PasswordHash attribute),

168
sha1_crypt (class in passlib.hash), 87
sha256_crypt (class in passlib.hash), 79
sha512_crypt (class in passlib.hash), 81
skipped (passlib.totp.TotpMatch attribute), 182
Solaris

sun_md5_crypt, 88
StaticHandler (class in passlib.utils.handlers), 199
sun_md5_crypt (class in passlib.hash), 89
supported (passlib.crypto.digest.HashInfo attribute),

66

T
testing

custom hash handler, 199
time (passlib.totp.TotpMatch attribute), 182
to_bytes() (in module passlib.utils), 189
to_dict() (passlib.context.CryptContext method), 63
to_dict() (passlib.totp.TOTP method), 184
to_json() (passlib.totp.TOTP method), 184
to_native_str() (in module passlib.utils), 190
to_string() (passlib.apache.HtdigestFile method),

45
to_string() (passlib.apache.HtpasswdFile method),

42
to_string() (passlib.context.CryptContext method),

63
to_string() (passlib.utils.handlers.GenericHandler

method), 194
to_unicode() (in module passlib.utils), 189
to_uri() (passlib.totp.TOTP method), 183
token (passlib.totp.TotpToken attribute), 180
TokenError, 70
TOTP

overview, 26

240 Index

Passlib Documentation, Release 1.8.0.dev0

usage examples, 26
TOTP (class in passlib.totp), 176
TotpMatch (class in passlib.totp), 182
TotpToken (class in passlib.totp), 180
truncate_size (in module passlib.ifc), 169

U
unix_crypt_schemes (in module passlib.utils), 187
unix_disabled (class in passlib.hash), 83
UnknownHashError, 69
update() (passlib.context.CryptContext method), 60
UsedTokenError, 70
user

PasswordHash keyword, 169
users() (passlib.apache.HtdigestFile method), 45
users() (passlib.apache.HtpasswdFile method), 42
using() (passlib.ifc.PasswordHash class method), 166
using() (passlib.totp.TOTP class method), 178

V
valid (passlib.totp.TotpToken attribute), 180
verify() (passlib.context.CryptContext method), 55
verify() (passlib.ifc.PasswordHash class method),

164
verify() (passlib.totp.TOTP class method), 181
verify() (passlib.utils.handlers.GenericHandler class

method), 195
verify_and_update()

(passlib.context.CryptContext method), 57
virtualbox

passwordhash, 159

W
Windows

Domain Cached Credentials, 142
Domain Cached Credentials v2, 143
LAN Manager hash, 138
NT hash, 140

Wordpress
crypt context, 48

X
xor_bytes() (in module passlib.utils), 188

Index 241

	Passlib 1.8.0.dev0 documentation
	Welcome
	Getting Started
	Online Resources
	Hosting

	Walkthrough & Tutorials
	Installation
	Supported Platforms
	Optional Libraries
	Installation Instructions
	Testing
	Building the Documentation

	Library Overview
	Password Hashes
	Password Contexts
	Two-Factor Authentication
	Application Helpers

	New Application Quickstart Guide
	Choosing a Hash
	The Options
	Detailed Comparison of Choices
	Making a Decision

	Creating and Using a CryptContext

	PasswordHash Tutorial
	Overview
	Hashing & Verifying
	Hashing
	Verifying
	Unicode & non-ASCII Characters

	Customizing the Configuration
	The using() Method
	Usage Example
	Other Keywords

	Context Keywords
	Identifying Hashes
	Choosing the right rounds value

	CryptContext Tutorial
	Overview
	Walkthrough Outline
	Basic Usage
	Using Default Settings
	Loading & Saving a CryptContext
	Deprecation & Hash Migration
	Deprecating Algorithms
	Integrating Hash Migration
	Settings Rounds Limitations

	Undocumented Features
	Full Integration Example
	Policy Configuration File
	Initializing the CryptContext
	Encrypting New Passwords
	Verifying & Migrating Existing Passwords

	TOTP Tutorial
	Overview
	Walkthrough
	1. Generate an Application Secret
	2. TOTP Factory Initialization
	3. Rate-Limiting & Cache Initialization
	4. Setting up TOTP for a User
	5. Storing the TOTP object
	6. Verifying a Token
	7. Reserializing Existing Objects

	Creating TOTP Instances
	Direct Creation
	Using a Factory

	Configuring Clients
	Rendering URIs
	Rendering QR Codes
	Parsing URIs

	Storing TOTP instances
	JSON Serialization
	Application Secrets
	Encrypting Keys

	Generating Tokens (Client-Side Only)
	Verifying Tokens
	Match & Verify
	Preventing Token Reuse
	Why Rate-Limiting is Critical

	API Reference
	passlib.apache - Apache Password Files
	Htpasswd Files
	Loading & Saving
	Inspection
	Modification
	Alternate Constructors
	Attributes
	Errors

	Htdigest Files
	Loading & Saving
	Inspection
	Modification
	Alternate Constructors
	Attributes
	Errors

	passlib.apps - Helpers for various applications
	Usage Example
	Django
	LDAP
	MySQL
	PHPass
	PostgreSQL
	Roundup
	Custom Applications

	passlib.context - CryptContext Hash Manager
	The CryptContext Class
	Constructor Keywords
	Primary Methods
	Hash Migration
	Disabled Hash Managment
	Alternate Constructors
	Changing the Configuration
	Examining the Configuration
	Saving the Configuration
	Configuration Errors

	Other Helpers

	passlib.crypto - Cryptographic Helper Functions
	passlib.crypto.digest - Hash & Related Helpers
	Hash Functions
	PKCS#5 Key Derivation Functions

	passlib.crypto.des - DES routines

	passlib.exc - Exceptions and warnings
	Exceptions
	TOTP Exceptions

	Warnings
	Minor Warnings
	Critical Warnings

	passlib.ext.django - Django Password Hashing Plugin
	Installation
	Configuration
	Module Contents

	passlib.hash - Password Hashing Schemes
	Overview
	Unix Hashes
	Active Unix Hashes
	Deprecated Unix Hashes
	Archaic Unix Hashes

	Other “Modular Crypt” Hashes
	Active Hashes
	Deprecated Hashes

	LDAP / RFC2307 Hashes
	Standard LDAP Schemes
	Non-Standard LDAP Schemes

	SQL Database Hashes
	passlib.hash.mssql2000 - MS SQL 2000 password hash
	passlib.hash.mssql2005 - MS SQL 2005 password hash
	passlib.hash.mysql323 - MySQL 3.2.3 password hash
	passlib.hash.mysql41 - MySQL 4.1 password hash
	passlib.hash.postgres_md5 - PostgreSQL MD5 password hash
	passlib.hash.oracle10 - Oracle 10g password hash
	passlib.hash.oracle11 - Oracle 11g password hash

	MS Windows Hashes
	passlib.hash.lmhash - LanManager Hash
	passlib.hash.nthash - Windows’ NT-HASH
	passlib.hash.msdcc - Windows’ Domain Cached Credentials
	passlib.hash.msdcc2 - Windows’ Domain Cached Credentials v2

	Cisco Hashes
	passlib.hash.cisco_type7 - Cisco “Type 7” hash
	passlib.hash.cisco_pix - Cisco PIX MD5 hash
	passlib.hash.cisco_asa - Cisco ASA MD5 hash

	Other Hashes
	passlib.hash.django_digest - Django-specific Hashes
	passlib.hash.grub_pbkdf2_sha512 - Grub’s PBKDF2 Hash
	passlib.hash.hex_digest - Generic Hexadecimal Digests
	passlib.hash.plaintext - Plaintext

	passlib.hosts - OS Password Handling
	Usage Example
	Unix Password Hashes
	Predefined Contexts
	Current Host OS

	passlib.ifc – Password Hash Interface
	PasswordHash API
	Base Abstract Class
	Hashing & Verification Methods
	Crypt Methods
	Factory Creation
	Hash Inspection Methods
	General Informational Attributes
	Salt Information Attributes
	Rounds Information Attributes

	passlib.pwd – Password generation helpers
	Password Generation
	Predefined Symbol Sets
	Password Strength Estimation

	passlib.registry - Password Handler Registry
	Interface
	Usage

	passlib.totp – TOTP / Two Factor Authentication
	Overview
	TOTP Class
	Alternate Constructors
	Factory Creation
	Basic Attributes
	Token Generation
	TotpToken

	Token Matching / Verification
	TotpMatch

	Client Configuration Methods
	Serialization Methods
	Helper Methods
	AppWallet
	Arguments
	Public Methods
	Semi-Private Methods

	Support Functions
	Deviations

	passlib.utils - Helper Functions
	Constants
	Unicode Helpers
	Bytes Helpers
	Encoding Helpers
	Randomness
	Interface Tests
	Submodules
	passlib.utils.handlers - Framework for writing password hashes
	passlib.utils.binary - Binary Helper Functions
	passlib.utils.des - DES routines [deprecated]
	passlib.utils.pbkdf2 - PBKDF2 key derivation algorithm [deprecated]

	Other Documentation
	Frequently Asked Questions
	Modular Crypt Format
	Overview
	History
	Requirements
	Identifiers & Platform Support
	OS Defined Hashes
	Additional Platforms
	Application-Defined Hashes

	Release History
	Passlib 1.8
	1.8.0 (NOT YET RELEASED)

	Passlib 1.7
	1.7.4 (2020-10-08)
	1.7.3 (2020-10-06)
	1.7.2 (2019-11-22)
	1.7.1 (2017-1-30)
	1.7.0 (2016-11-22)

	Passlib 1.6
	1.6.5 (2015-08-04)
	1.6.4 (2015-07-25)
	1.6.3 (2015-07-25)
	1.6.2 (2013-12-26)
	1.6.1 (2012-08-02)
	1.6.0 (2012-05-01)

	Passlib 1.5
	1.5.3 (2011-10-08)
	1.5.2 (2011-09-19)
	1.5.1 (2011-08-17)
	1.5.0 (2011-07-11)

	Passlib 1.4 & Earlier
	1.4 (2011-05-04)
	1.3.1 (2011-03-28)
	1.3 (2011-03-25)
	1.2 (2011-01-06)
	1.0 (2009-12-11)
	0.5 (2008-05-10)

	Copyrights & Licenses
	Credits
	License for Passlib
	Licenses for incorporated software
	MD5-Crypt
	DES
	jBCrypt
	Wordsets

	Python Module Index
	Index

